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Abstract

Who will gain and who will lose as AI automates tasks? While much of the discourse fo-

cuses on job displacement, we show that job transformation—a shift in the task content

of jobs—creates large and heterogeneous earnings effects. We develop a quantitative,

task-based model where occupations bundle multiple tasks and workers possessing

heterogeneous portfolios of task-specific skills select into occupations by comparative

advantage. Automation shifts the relative importance of tasks within each occupation,

inducing wage effects that we characterize analytically. To quantify these effects, we

measure the task content of jobs using natural language processing, estimate the distri-

bution of task-specific skills, and exploit mappings to prominent automation exposure

measures to identify task-specific automation shocks. We apply the framework to ana-

lyze automation by large language models (LLMs). Within highly exposed occupations,

like office and administrative roles, workers specialized in information-processing tasks

leave and suffer wage losses. By contrast, those specialized in customer-facing and

coordination tasks stay and experience wage gains as work rebalances toward their

strengths. Our findings challenge the common assumption that automation exposure

equates to wage losses.
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1 Introduction

Rapid advances in artificial intelligence (AI) raise the prospect of machines taking over an

expanding set of tasks. Who will gain and who will lose from this wave of automation? While the

discourse often centers on entire jobs being eliminated (Frey and Osborne, 2017; Susskind, 2020),

the historical record suggests that automation transforms what tasks workers perform within

jobs long before it erases them (Autor et al., 2003) – a process we refer to as job transformation.

During the industrial revolution, weavers continued working in large numbers after power-

looms were introduced, but their responsibilities shifted toward fixing mechanical issues and

coordinating workflow across multiple looms (Bessen, 2012). In the late 20th century, CNC tools

shifted machinists’ roles from routine tasks like moving and positioning tools to specialized

problem-solving like monitoring and correcting digital processes (Bartel et al., 2007).1 Surveys

suggest such task shifts are likely to play a major role in the case of AI, too (Bonney et al., 2024).2

While job transformation appears of first-order importance for understanding the labor

market effects of AI, quantifying its role presents significant measurement challenges. First, the

sign and magnitude of job transformation effects depend on workers’ entire portfolios of task-

specific skills, which are typically unobserved. Second, analysis requires knowing which specific

tasks are automated. State-of-the-art models therefore typically abstract from job transformation:

assuming that tasks in any occupation remain unchanged allows characterizing wage effects

through the competing forces of overall labor share declines and productivity gains (Acemoglu

and Restrepo, 2018a,b).

We develop a task-based framework of job transformation and apply it to quantify how

automation by large language models (LLMs) affects wages for heterogeneously skilled workers.

To overcome the two measurement challenges, we map the model to granular tasks that link

directly to influential automation exposure measures (Webb, 2019; Eloundou et al., 2023); we

then exploit the model’s structure to estimate the distribution of task-specific skills.

Our analysis yields three main findings. First, as LLM-driven automation of information-

processing tasks generates more occupational reallocation than past automation by industrial

robots, occupation-level averages provide limited guidance for worker-level outcomes. Second,

workers specialized in LLM-exposed tasks leave their transformed jobs and experience wage

losses. Third, the same shock creates two groups of winners: incumbent workers remaining in

1Systematic studies (e.g., Spitz-Oener, 2006; Atalay et al., 2020) corroborate these vignettes, demonstrating that
the shift from routine tasks toward non-routine analytic and social tasks over the past decades arose predominantly
from changes in task content within occupations rather than shifts in occupations’ employment shares.

2Reporting in the Financial Times (“Disrupted or displaced? How AI is shaking up jobs,” June 08 2025) provides
complementary anecdotal evidence. For example, “According to PwC, the mix of capabilities sought by employers
is changing 66 per cent faster in occupations most exposed to AI, such as financial analysts, than in those least
exposed, such as physical therapists.”
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highly exposed office and administrative jobs, freed to spend more time on customer-facing and

coordination tasks in which they excel; and workers previously deterred from highly exposed

occupations by skill barriers in now-automated tasks, who following automation switch into

these transformed roles. Our findings challenge the common practice of equating automation

exposure with wage losses; and highlight that automation, through job transformation, can

create large and heterogeneous wage effects even absent job elimination.

Theory. We start by introducing a model of automation-driven job transformation, building

on the canonical task-based theory.3 In our model, task aggregation occurs at the occupational

level, with different occupations attaching heterogeneous weights to tasks. Each worker has a

portfolio of task-specific skills and tasks are assigned to human labor or machines. We integrate

this production framework with Roy (1951)-style occupational choice, where workers select

occupations based on comparative advantage.

A crucial ingredient of our model of automation is task bundling: to produce output, a worker

must perform all tasks in an occupation, including tasks they are relatively less skilled at. We

do not explicitly model the sources of bundling, like transaction costs, but view it as eminently

plausible—most economists may be more productive at data analysis or math than at emailing,

yet emailing remains part of their job—and let the degree of bundling be guided by our empirical

analysis. Task bundling significantly affects how automation works. Automation reassigns tasks

from labor to machines, and in the presence of bundling, this creates job transformation: when

an occupation involves an automated task, workers spend less time on that task—no time if the

the task is fully automated—while time on all other bundled tasks increases proportionately.

The model provides an intuitive characterization of wages and how their response to automa-

tion are shaped by task bundling and worker specialization. Wage levels reflect both absolute

advantage (i.e., average skill) and comparative advantage (i.e., alignment between skill special-

ization and occupational task requirements). Following automation, individual wages change

not only due to the standard displacement and productivity effects, whose net effect appears as

an occupation-level shifter, but also due to job transformation: Workers relatively more skilled

at automated tasks than at non-automated tasks tend to lose, whereas gains accrue to those

relatively unskilled at automated tasks. We derive an analytical decomposition of these job

transformation effects for average occupational wages: First, they depend on whether the oc-

cupation’s task content shifts toward tasks for which the average worker is more skilled (task

upgrading) or less skilled (task downgrading). Second, they tend to be more negative for more

exposed occupations, which often attract workers who are exceptionally skilled at the automated

task (selection effect). Third, they tend to rise when automation leads to large shifts in the skill

composition of an occupation (re-sorting). Reflecting the first measurement challenge noted

3See, in particular, Autor et al. (2003); Acemoglu and Autor (2011); Acemoglu and Restrepo (2018b).
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earlier, the absolute and relative magnitude of these job transformation effects depend on the

underlying distribution of multi-dimensional skills, which is not directly observed.

Measuring the skill distribution. To make progress, we leverage our model’s structure to

estimate the distribution of multi-dimensional skills. Intuitively the identification strategy works

as follows. Suppose we have a panel of worker job histories and know task weights for different

occupations. Consider two occupations, economists and software engineers, where both code,

but economists also write. Identification comes from two sources: wage comparisons and

occupational choices. If we observe a worker in both occupations, their wage as a software

engineer reveals their coding skill, letting us infer their writing skill from their economist wage.

If we only observe the worker as an economist, say, this reveals their coding skills fall below

the threshold for choosing software engineering. We formalize these intuitions as a maximum-

likelihood estimation problem to recover the means and variance-covariance structure of skills,

alongside other structural parameters.4

We implement this approach relying only on publicly available data, the National Longitu-

dinal Survey of Youth (NLSY) 1979, and by measuring occupational task weights using natural

language processing (NLP) techniques. For the latter, we cluster approximately 19,000 detailed

occupation-specific tasks from the Occupational Information Network (O*NET) into 38 tractable

and interpretable task categories. Our theory implies that occupational task weights reflect

optimal time allocation, and we use an LLM to measure these weights as time shares across

tasks for each occupation.5 The resulting task-weight matrix indicates task bundling: only 2% of

occupations have a single task comprising more than half their time.

Despite its simplicity, the estimated model fits several salient empirical moments well. Be-

yond generating realistic wage distributions within and between occupations, the model predicts

that, conditional on switching occupations, workers tend to move to jobs with task require-

ments similar to their origin occupation — consistent with evidence for task-specific human

capital (Gathmann and Schönberg, 2010), but hard to explain if skills were fully general or

occupation-specific.

Mapping to automation exposure measures. Quantifying automation-induced job transfor-

mation effects for current or future technologies requires knowing which exact tasks are being, or

will be, automated. This is the second of the two aforementioned measurement challenges.6 Our

framework enables us to overcome this challenge: The model tasks have a direct counterpart in

the data in the form of (aggregated) O*NET task categories. As the underlying detailed O*NET

4Monte Carlo exercises, using simulated data, verify that our method successfully recovers the skill distribution.
5We conduct extensive exercises to validate this LLM-based approach, including comparisons to worker-level

time diary data.
6Quantifying job transformation effects thus requires information beyond the total task displacement as mea-

sured by the overall labor share decline.
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tasks are widely used to construct empirical task-level exposure measures, we can leverage this

mapping to identify task-specific automation shocks.

For our main analysis, we focus on automation through large language models (LLMs),

given their rapid rollout (Bick et al., 2024) and policymaker interest in their labor market conse-

quences.7 To identify tasks most exposed to LLMs, we draw on Eloundou et al.’s (2023) exposure

measures. This approach identifies several information-processing tasks as most exposed to

LLMs. These tasks are common in office and administrative support roles, such as financial clerks

and record clerks. To compare effects across technologies, we also evaluate the consequences of

industrial robot automation, leveraging the exposure measure developed by Webb (2019).

Results. Our analysis shows that LLM-driven job transformation creates large and hetero-

geneous worker-level earnings effects. Our first result is that occupational reallocation flows

render average occupational wages a poor guide to individual worker experiences. While average

wages in the most exposed occupations increase following LLM automation, this largely reflects

re-sorting effects from substantial changes in worker composition. These arise because job

transformation significantly alters occupational requirements: customer-facing and coordina-

tion tasks rise in significance as information-processing tasks are automated. This reflects a

general pattern: re-sorting wage effects are larger for shocks affecting more dispersed skills.

Our estimates show that LLM-exposed tasks exhibit higher skill dispersion than robot-exposed

tasks, suggesting occupation-level comparisons provide worse guidance for the AI era than for

historical automation.

Our second result highlights which individual workers lose most from LLM automation:

those who selected office and administrative support roles because they excelled at processing

and analyzing records. Automation of this task erases these workers’ comparative advantage in

their current jobs, leading them to exit for the next-best occupation and suffer large wage losses.

The experience of these incumbent-leavers reflects the selection effect. This creates a negative

relationship between incumbent wages and exposure, contrasting sharply with occupation-level

outcomes.

Our third result highlights two groups of winners. For one, not all incumbents lose. Work-

ers who sorted into highly exposed occupations because they excel at tasks bundled with the

automated task – such as customer service or administrative coordination – experience wage

gains from task upgrading. Automation frees them to spend more time on non-automated tasks

where they are relatively more productive. The largest wage gains, however, accrue to workers

7See, for instance, IMF research (Cazzaniga, 2024) and recent speeches by IMF and
ECB heads Georgieva and Lagarde: https://www.imf.org/en/Blogs/Articles/2024/01/14/
ai-will-transform-the-global-economy-lets-make-sure-it-benefits-humanity and https:
//www.ecb.europa.eu/press/key/date/2025/html/ecb.sp250401_1~d6c9d8df11.en.html.
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who switch into highly exposed occupations. These in-switchers were previously deterred from

exposed occupations by the large weight on information-processing tasks. Automation thus

removes a skill-based entry barrier, generating significant wage gains for these workers.

Zooming out, our findings carry two major implications. First, they suggest that the widespread

practice of equating occupation-level automation exposure with adverse worker-level impacts is

misleading. Even absent positive productivity effects at the occupation level, workers within any

occupation may win or lose depending on their skill specialization. In brief, exposure measures

are best interpreted as indicating potential for change; they need to be paired with a structural

model that carefully maps exposure into wages, at least for forward-looking analyses. Second,

an absence of evidence documenting widespread job elimination should not be interpreted to

imply that AI lacks major labor market effects. In our model, AI automation generates wage

effects by transforming how workers spend their time.

Literature. Our paper contributes to a burgeoning literature evaluating the labor market conse-

quences of AI. One influential strand empirically quantifies task exposure to new technologies, AI

foremost among them, drawing on patents (Webb, 2019; Kogan et al., 2023), capability-specific AI

benchmarks (Felten et al., 2018, 2021), and expert or machine judgment (Brynjolfsson et al., 2018;

Eloundou et al., 2023). These exposure measures alone cannot predict earnings consequences.

Our paper complements this work by offering a structural approach to map task exposure mea-

sures to individual-level labor market outcomes. Our findings underscore that similarly exposed

individuals may experience very different earnings effects.

Methodologically, our work belongs to a second strand that uses structural models. The most

closely related paper is Hampole et al. (2025).8 Hampole et al. (2025) use CV and job posting

data to construct firm- and time-varying measures of exposure to existing machine learning/AI

techniques, which allows them to study heterogeneity across firms — whereas our analysis is

largely silent on firm heterogeneity. Like ours, their model features occupations comprising

multiple tasks, so automation may raise wages through reallocation to complementary tasks.

We make two distinct contributions. First, whereas workers in their model are ex-ante identical,

our theory features multi-dimensional skill heterogeneity. We contribute a methodology to

empirically discipline this heterogeneity. Theory and skill measurement jointly allow us to show

how automation, through job transformation, differentially affects worker earnings based on

heterogeneous skills. This enables us to show that workers in similarly exposed occupations may

fare differently depending on their specialization. Second, our model links to various existing

task exposure measures, including forward-looking ones, enabling us to quantify the labor

8Several concurrent works are developing quantitative task-based models of AI (Fan and Restrepo, 2025; Lashkari
et al., 2025; Althoff and Reichardt, 2025). A comparative discussion of these complementary approaches will follow
once working papers become available.
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market consequences of current generative AI, central to policymaker and societal concerns.9

Second, we contribute to the literature on task-based theory of production.10 Our first contri-

bution is to integrate this model of production with dynamic occupational choice (Dix-Carneiro,

2014; Hsieh et al., 2019; Traiberman, 2019).11 Beyond being instrumental for our measurement

strategy, this approach captures worker reallocation across jobs as an individual-level adjustment

mechanism that empirical studies highlight as important (Dauth et al., 2021; Boustan et al., 2022).

Second, and more importantly, we characterize automation effects through job transformation

that are typically assumed away by holding tasks fixed, despite empirical evidence suggesting

they are likely of first-order importance. In terms of theory, this is a technically straightfor-

ward extension of the canonical task-based model, and we sharply characterize the resulting

automation effects for wages.12 Our primary contribution lies in measurement: quantifying job

transformation effects requires knowledge of the distribution of task-specific skills, which we esti-

mate. Moreover, since the labor share is no longer a sufficient statistic for displacement, we show

how to leverage measures of technology-specific task exposure to construct automation shocks.

Our emphasis on task bundling relates to the contemporaneous work of Autor and Thompson

(2025), though the papers differ substantially in methodology and focus. Autor and Thompson’s

(2025) model features a strict expertise hierarchy where more expert workers compete with less

expert workers but not vice versa. Our model has no occupation-level expertise concept; instead,

workers differ in skills across tasks without ex-ante ordering. We estimate the skill distribution

directly, so some tasks emerge as “expert”’ ex post (i.e., low mean, high dispersion). Autor and

Thompson (2025) use their model with a novel reduced-form approach to resolve the historical

puzzle of why routine task automation often raised wages in routine-intensive occupations

despite employment declines. We provide a fully structural quantitative analysis of distributional

earnings effects from ongoing or future AI automation.

Third, our focus on changing task content within occupations is motivated by a large em-

pirical literature highlighting the importance of what we labeled job transformation. Starting

with the seminal work of Autor et al. (2003), numerous studies using task data have documented

9Three other strands of AI research merit highlighting. The first comprises surveys characterizing adoption
patterns and early trends in work reorganization (Bick et al., 2024; Humlum and Vestergaard, 2025b,a). The second
studies whether AI can accelerate economic growth rates by automating tasks in the production of innovative ideas
(Aghion et al., 2017; Jones, 2022, 2024). This mechanism is beyond our scope but would roughly correspond to a
level shift in incomes, leaving open questions about the distribution of gains that are at the core of this paper (cf.
Autor, 2015, p.28). The third involves RCTs that causally identify the productivity effects of generative AI adoption in
narrowly defined contexts (e.g., Dell’Acqua et al., 2023; Noy and Zhang, 2023; Brynjolfsson et al., 2025).

10See, among others, Autor et al. (2003); Acemoglu and Autor (2011); Acemoglu and Restrepo (2018b); Ocampo Díaz
(2022); Freund (2023); Restrepo (2024).

11Several studies focus on the role of occupational reallocation in response to technological shocks, with an
emphasis on GE interactions (Humlum, 2019; del Rio-Chanona et al., 2021; Bocquet, 2022; Fan, 2025).

12An additional difference is that, in our approach, positive productivity effects accrue only to exposed occupations,
because automated tasks are not bundled together with every other task as in existing models.
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significant shifts in task requirements within jobs over time.13 However, this work has largely

not connected tasks, which characterize jobs, to multi-dimensional skills, which characterize

workers and are typically unobservable. This paper provides a structural framework to measure

the distribution of task-specific skills and to quantify the heterogeneous earnings effects of

automation-induced job transformation.

Fourth, we contribute to research demonstrating the importance of multi-dimensional skills

for labor markets.14 Our primary contribution lies in measurement: developing and imple-

menting a methodology to estimate the distribution of task-specific skills. We thus relate to

Guvenen et al. (2020), Lise and Postel-Vinay (2020) and Baley et al. (2022), who used military

test scores to approximate the skill distribution among young workers. Our estimation method-

ology is not anchored by observed test scores but offers two advantages. First, flexibility: Not

being constrained to the availability of test score data, our methodology can be applied to any

large-scale worker dataset with information on occupations and wages. Second, we estimate

skill distributions in potentially high-dimensional task spaces rather than being restricted to

low-dimensional categories like cognitive, manual, and interpersonal skills. This allows us to

connect skill estimation to tasks in the automation exposure literature and use their measures

to discipline our counterfactuals.15 Overall, our paper closes the gap between the literatures

on multi-dimensional skills – which has thought carefully about skill measurement and sorting

but relies on abstract notions of technological change – and task-based production – which

highlights how the demand for specific skills is shaped by automation.16

Finally, by integrating an LLM into our empirical workflow, we relate to a nascent literature

showing how these tools can be leveraged for economics research. Beyond assisting with tasks

like coding and writing (Korinek, 2023), Athey et al. (2024), for example, use an LLM to predict

13These studies draw on the Dictionary of Occupational Titles (DOT) and O*NET, worker surveys (Autor and
Handel, 2013; Spitz-Oener, 2006), and job ads (Atalay et al., 2020). Also see Lin (2011) and Autor et al. (2024).

14In terms of theory, Lindenlaub (2017) likewise studies multidimensional matching between workers and jobs
and how technological change shapes it. While Lindenlaub (2017) focuses on shifts in complementarity between
skills and production requirements, we adopt a task-based production approach to study automation. Our model
also resembles Lazear’s (2009) skills-weights approach, treating skills not as inherently specific to a single production
unit — firms in Lazear’s work, occupations in ours – but recognizing that different units attach heterogeneous
weights to different skills. For surveys see Deming (2023) and Woessmann (2024).

15Grigsby (2023), while pursuing a different question, likewise infers the multidimensional skill distribution from
occupational choices and wages. The most important of several differences in methodology is that in Grigsby’s
(2023) approach, a task corresponds to a group of occupations, whereas we conceptualize occupations as bundles
of tasks and estimate the distribution of these granular skills. This distinction between occupations and tasks is
essential for studying the consequences of job transformation.

16Woessmann (2024, p.4) aptly summarizes the gap in the literature this paper helps fill: “[Although] worker skills
motivate the entire task-based approach to how labor markets adjust to technological change, the consideration of
multidimensional tasks has not been matched by multidimensional measurement of skills on the empirical side.
While the tasks required in different jobs are richly described, worker skills are still mostly proxied rudimentarily by
educational degree.”
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the evolution of worker careers. Our use of LLMs to cluster tasks and measure occupational

task allocation resembles the data processing and classification use cases discussed by Dell

(2024). We show that this approach produces results consistent with established measurement

frameworks while offering greater flexibility.

Outline. Section 2 presents the theory, Section 3 takes it to the data, Section 4 evaluates the

labor market effects of LLMs, and Section 5 offers a concluding discussion.

2 Theoretical Framework

In this section we set out the theoretical environment (Section 2.1), derive optimality conditions

and define the equilibrium (Section 2.2). We then define automation in the context of the model

and characterize its effects on wages (Section 2.3).

2.1 Environment

Time is discrete and runs forever. The economy is populated by workers and entrepreneurs who

produce and consume a single, homogeneous numeraire good.

Workers. There is a unit mass of infinitely lived workers. Before the onset of time, each worker

draws and observes their skill vector 𝑠𝑖 ∈ R𝑛skill , where 𝑠𝑖 ∼ 𝒩(𝑠,Σ𝑠). This skill vector remains

fixed forever.17 In each period 𝑡, a worker draws two shocks: a productivity shock 𝜀𝑖 ,𝑡 ∼ 𝒩(0, 𝜍2),
and a vector of occupation-specific preference shocks 𝑢𝑖 ,·,𝑡 ∈ R𝑛occ , 𝑢𝑖 ,·,𝑡 ∼ Gumbel(0, 𝜈).
Production. Production occurs across 𝑛occ occupations indexed by 𝑜 ∈ 𝒪. Production in

occupation 𝑜 requires that a series of tasks 𝜏 ∈ 𝒯 be carried out; what distinguishes occupations

from each other are the weights {𝛼𝑜,𝜏}𝜏∈𝒯 attached to these tasks, with
∑

𝒯 𝛼𝑜,𝜏 = 1∀𝑜 ∈ 𝒪.

Concretely, the amount of output in an occupation 𝑜 job is determined by a Cobb-Douglas

aggregator with occupation-specific weights 𝛼𝑜,𝜏. Hence, the output of a worker 𝑖 in occupation

𝑜 is

𝑦𝑖 ,𝑜,𝑡 =
∏
𝜏∈𝒯

𝑥
𝛼𝑜,𝜏

𝑖 ,𝜏,𝑡 (1)

where 𝑥𝑖 ,𝜏,𝑡 is the amount of task 𝜏 used in production.18 We interpret these tasks as concrete

17A couple of remarks regarding the assumption that skills are time-invariant. In part, the assumption is motivated
by computational constraints in the estimation of skills in Section 3. Additionally, in Section 2.3.3, it enables us to
derive closed-form analytical approximations that allow us to sharply characterize the effects of job transformation.

18The unit elasticity of substitution across bundled tasks implicit in equation (1) represents a common baseline in
the literature (e.g. Acemoglu and Restrepo, 2022, pp. 1986) and carries some important advantages. First, it provides
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work steps that need to be performed in a given occupation, such as analyzing business data,

moving materials, delivering instruction, etc. A task can be produced using (i) the worker’s

time or (ii) machine capital. Machine capital has a productivity exp(𝑧𝜏) at task 𝜏 and can be

rented from an infinitely elastic capital market at exogenous rate 𝑟.19 We denote the set of tasks

produced with human labor as 𝒯𝑙 and the set of tasks produced with machine capital as 𝒯𝑚 . For

now, we treat these sets as exogenous and assume only that they do not depend on the specific

occupation nor the skill of any individual worker. In Appendix A.1, we discuss a set of additional

assumptions under which (𝒯𝑙 ,𝒯𝑚) can be endogenized.

A competitive firm sector sets (log) wages 𝑤𝑖 ,𝑜,𝑡 as a function of each worker’s skill 𝑠𝑖 ,𝜏 and

idiosyncratic shock 𝜀𝑖 ,𝑡 . The firm freely allocates the worker’s unit measure of labor across tasks

in 𝒯𝑙 , employing effective labor exp
(
𝑠𝑖 ,𝜏 + 𝜀𝑖 ,𝑡

)
· ℓ𝑖 ,𝜏,𝑡 to produce task 𝜏.20 For any task 𝜏 ∈ 𝒯𝑚 ,

the firm chooses what quantity of capital 𝑚𝜏 to rent. The firm thus optimizes output subject to

the constraints ∑
𝜏∈𝒯𝑙

ℓ𝑖 ,𝜏,𝑡 = 1

𝑥𝑖 ,𝜏,𝑡 = exp
(
𝑠𝑖 ,𝜏 + 𝜀𝑖 ,𝑡

)
· ℓ𝑖 ,𝜏,𝑡 if 𝜏 ∈ 𝒯𝑙

𝑥𝑖 ,𝜏,𝑡 = exp (𝑧𝜏) · 𝑚𝜏 if 𝜏 ∈ 𝒯𝑚

Occupational choice. In every period 𝑡, each worker chooses an occupation to work in. Given

their skill vector 𝑠𝑖 and productivity shock 𝜀𝑖 ,𝑡 , they fully anticipate their earnings conditional on

entering occupation 𝑜 ∈ 𝒪. We assume that in any period 𝑡, the worker chooses the occupation

yielding the highest utility given their individual vector of occupation-specific wages and prefer-

ence shocks 𝑢𝑖 ,·,𝑡 .21 We further assume that each worker has log utility over their consumption

of the numeraire, which is equal to their wage. Thus, the worker’s occupational choice �̂�𝑖 ,𝑡 is a

a transparent way for measuring {𝛼𝑜,𝜏}𝑜∈𝒪 , as described in Section 3.2, because task shares are invariant to shifts in
task-specific skill. Second, it confers significant tractability when estimating the skill distribution by producing a
log-linear wage equation. Third, because under Cobb-Douglas a productivity-enhancing automation shock does
not mechanically increase the relative demand for human-performed tasks (and hence wages), this assumption
transparently isolates wage effects arising from the interaction of shifting task weights and skill specialization.

19Capital supply being infinitely elastic will tend to make average wages rise following the adoption of a new
automation technology (Caselli and Manning, 2019), relative to the case of a fixed capital stock (Acemoglu and
Restrepo, 2018b, Section I). Our focus lies on the distributional effects.

20For ease of notation, we suppress human skills for machine tasks from the vector of human skills. Thus,
|𝒯𝑙 | = 𝑛skills.

21We introduce no exogenous occupational switching frictions, so any persistence in occupational choices arises
endogenously from the interaction of task-level skill specialization and occupational differences in task loadings.
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function of log wages:

�̂�𝑖 ,𝑡 = argmax𝑜𝑤𝑖 ,𝑜,𝑡 + 𝑢𝑖 ,𝑜,𝑡 (2)

Discussion. We close this section by noting that the model is avowedly partial equilibrium

in nature: We do not model households’ demand for heterogeneous consumption goods and,

instead, treat occupational output prices as fixed — equivalently, demand for occupational

output is perfectly elastic. This represents a notable departure from a majority of the literature,

as we abstract from a central force – i.e., the interplay between non-neutral technological progress

and consumer preferences — that can dampen or amplify the wage effects of automation (Autor

and Dorn, 2013). While we could relax this assumption, we deliberately impose it to isolate what

we argue are important and heterogeneous labor market effects of automation that arise from

induced shifts in task requirements within occupations, i.e., job transformation.

2.2 Optimality conditions and equilibrium

We next characterize optimality conditions, derive formulas for equilibrium wages and occupa-

tional choice, and then define an equilibrium.

Firm optimality and output. The firm’s problem is

max
ℓ𝑖 ,𝑜,𝜏,𝑡 ,𝑚𝑖 ,𝑜,𝜏,𝑡

∏
𝜏∈𝒯𝑙

(
exp(𝑠𝑖 ,𝜏 + 𝜀𝑖 ,𝑡)ℓ𝑖 ,𝑜,𝜏

)𝛼𝑜,𝜏
∏
𝜏∈𝒯𝑚

(
exp(𝑧𝜏)𝑚𝑖 ,𝑜,𝜏,𝑡

)𝛼𝑜,𝜏 − exp(𝑤𝑖 ,𝑜,𝑡) · 1 − 𝑟
∑
𝜏∈𝒯𝑚

𝑚𝑖 ,𝑜,𝜏,𝑡

s.t.
∑
𝜏∈𝒯𝑙

ℓ𝑖 ,𝑜,𝜏,𝑡 = 1.

Defining 𝑚𝑖 ,𝑜,𝑡 :=
∑

𝜏∈𝒯𝑚 𝑚𝑖 ,𝑜,𝜏,𝑡 , taking first order conditions yields

ℓ𝑖 ,𝑜,𝜏,𝑡 =
𝛼𝑜,𝜏∑

𝜏′∈𝒯𝑙 𝛼𝑜,𝜏′
∀𝜏 ∈ 𝒯𝑙 , (3)

𝑚𝑖 ,𝑜,𝜏,𝑡 =
𝛼𝑜,𝜏∑

𝜏′∈𝒯𝑚 𝛼𝑜,𝜏′
𝑚𝑖 ,𝑜,𝑡 ∀𝜏 ∈ 𝒯𝑚 , (4)

©­«
∑
𝜏∈𝒯𝑚

𝛼𝑜,𝜏
ª®¬

𝑦𝑖 ,𝑜

𝑚𝑖 ,𝑜,𝑡
= 𝑟. (5)
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which implies that log output equals

log 𝑦𝑖 ,𝑜,𝑡 =


∑
𝜏∈𝒯

𝛼𝑜,𝜏∑
𝜏∈𝒯𝑙 𝛼𝑜,𝜏

log(𝛼𝑜,𝜏)
 − log

©­«
∑
𝜏∈𝒯𝑙

𝛼𝑜,𝜏
ª®¬ +


∑
𝜏∈𝒯𝑚

𝛼𝑜,𝜏∑
𝜏∈𝒯𝑙 𝛼𝑜,𝜏

(𝑧𝜏 − log 𝑟)


+

∑
𝜏∈𝒯𝑙

𝛼𝑜,𝜏∑
𝜏∈𝒯𝑙 𝛼𝑜,𝜏

𝑠𝑖 ,𝜏

 + 𝜀𝑖 ,𝑡 .

Wages. Zero profits imply 𝑤𝑖 ,𝑜,𝑡 = log
(∑

𝜏∈𝒯𝑙 𝛼𝑜,𝜏

)
+ log 𝑦𝑖 ,𝑜,𝑡 , which means that the log wage of

individual 𝑖 in occupation 𝑜 given their skill vector 𝑠𝑖 ,· and their productivity shock 𝜀𝑖 ,𝑡 can be

written as the sum of an occupation-specific intercept, the weighted sum of log skills, and 𝜀𝑖 ,𝑡 :

𝑤𝑖 ,𝑜,𝑡 = 𝜇𝑜 +
∑
𝒯𝑙

𝛼𝑜,𝜏

𝐿𝑆𝑜
· 𝑠𝑖 ,𝜏 + 𝜀𝑖 ,𝑡 (6)

where 𝜇𝑜 =
∑

𝜏∈𝒯
𝛼𝑜,𝜏∑

𝜏∈𝒯𝑙 𝛼𝑜,𝜏
log

(
𝛼𝑜,𝜏

)
+

(∑
𝜏∈𝒯𝑚

𝛼𝑜,𝜏∑
𝜏∈𝒯𝑙 𝛼𝑜,𝜏

(𝑧𝜏 − log 𝑟)
)

and LS𝑜 =
∑

𝜏∈𝒯𝑙 𝛼𝑜,𝜏 is the

labor share in occupation 𝑜. For future reference, it is useful to define the following matrix of

task weights.

Remark 1 (Task-weight matrix.). The matrix 𝐴, defined as

𝐴 =

©­­­«
𝛼1,1

𝐿𝑆1

𝛼1,2

𝐿𝑆1
. . .

𝛼1,𝑛skill
𝐿𝑆1

...
...

. . .
...

𝛼𝑛occ ,1

𝐿𝑆𝑛occ

𝛼𝑛occ ,2

𝐿𝑆𝑛occ
. . .

𝛼𝑛occ ,𝑛skill
𝐿𝑆𝑛occ

ª®®®¬ ∈ R𝑛occ×𝑛skill (7)

summarizes the relative weights attached to each task 𝜏 ∈ 𝒯𝑙 across occupations 𝑜 ∈ 𝒪. The row

vector 𝐴𝑜 := 𝐴𝑜,· contains the task weights corresponding to occupation 𝑜.

Using this notation, we can write the vector of wages for a worker with skill vector 𝑠 as

𝑤 = 𝜇 + 𝐴𝑠 + 𝜀𝑖 ,𝑡 ∈ R𝑛occ

The wage equation allows for the following intuitive decomposition:

𝑤𝑖 ,𝑜,𝑡 = 𝜇𝑜 +
1

𝑛skill

∑
𝒯𝑙

𝑠𝑖 ,𝜏︸        ︷︷        ︸
scalar absolute advantage

+Cov

©­­­­­­­«
𝑛skill ·

𝛼𝑜,·

𝐿𝑆𝑜

, 𝑠𝑖 ,· −
1

𝑛skill

∑
𝒯𝑙

𝑠𝑖 ,𝜏︸                ︷︷                ︸
specialization vector

ª®®®®®®®¬
+ 𝜀𝑖 ,𝑡
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where the covariance operator is with respect to equal weights. The wage of a worker thus de-

pends on their absolute advantage (captured by the average skill) and on how much the worker

specializes in the skills that are important for that occupation (captured by the covariance term).

Occupational choice. Given the utility maximization problem in equation (2), the probability

for individual 𝑖 to choose occupation 𝑜 conditional on their wage vector 𝑤𝑖 ,· is

𝑃(�̂� = 𝑜 |𝑤𝑖 ,·) =
exp(𝑤𝑖 ,𝑜/𝜈)∑
𝑜′ exp(𝑤𝑖 ,𝑜′/𝜈)

(8)

Equilibrium. An equilibrium is defined as a joint distribution Γ of occupation choices, log

wages 𝑤, log skills 𝑠 and idiosyncratic productivity shocks 𝜀·, such that: (i) equation (6) holds at

any point in the distribution (that is, firms make zero profits); (ii) the marginal distribution of

occupations conditional on wages follows equation (8) (that is, workers optimize); and (iii) the

unconditional marginal distributions of skills 𝑠 and occupational shocks 𝜀 follow 𝒩(𝑠,Σ𝑠) and

𝒩(0, 𝜍2𝐼), respectively.

2.3 The wage effects of automation in theory

We now describe how automation of a particular task 𝜏★ is formalized. To do this, we endogenize

the task assignment (𝒯𝑙 ,𝒯𝑚), then characterize the induced wage change as a function of skills.

We allow for arbitrarily large shocks with potentially non-linear effects rather than relying on

first-order perturbation methods, which may not capture a shock’s transformative nature.

2.3.1 Automation in the model

To conceptualize automation and its wage effects we now endogenize the task assignment

(𝒯𝑙 ,𝒯𝑚) and make it dependent on the underlying machine productivity 𝑧𝜏 at every task 𝜏.

Appendix A.1 outlines the set of assumptions we introduce to this end and derives a minimum-

machine productivity threshold �̄�𝜏★ above which automation optimally occurs in equilibrium.22

We model an automation shock as a one-time, permanent change of 𝑧𝜏★ that leads to the

reassignment of task 𝜏★ from labor to machines. Let the prime symbol denote variables after an

automation shock in period 𝑡★ and let (𝒯𝑙 ,𝒯𝑚) be the initial task allocation. The new task sets

22In models of automation which do not explicitly feature task bundling or occupational choice, such as (Acemoglu
and Restrepo, 2018b) and Acemoglu and Restrepo (2022), tasks can be ordered by the relative productivity of humans
to machines. The threshold at which automation occurs can then be written as the point at which this productivity
ratio equals the ratio of wages to capital costs. The introduction of occupational choice and skill heterogeneity in our
setting complicates this simple rule. To maintain transparency, we maintain the assumption that the automation
choice is common across occupations and workers of different skills.
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are thus

𝒯 ′
𝑙 = 𝒯𝑙 ∪ 𝜏★ and 𝒯 ′

𝑚 = 𝒯𝑚\𝜏★.

The qualitative analyses in this Section 2.3 hold for any value of machine productivity {𝑧𝜏★ :

𝑧𝜏★ ≥ �̄�𝜏★}. For our quantitative analyses in Section 4 we need to take a stand on the exact value

of 𝑧𝜏★ and consider the specific case where machine productivity at the newly automated task is

just high enough to make the automation of task 𝜏★ optimal from the perspective of all firms,

i.e., 𝑧𝜏★ = �̄�𝜏★.

Associated with the automation shock is a change in the occupational task weight matrix 𝐴,

as defined in Remark 1, whereby automation reduces the weight on the automated task to zero

and increases the weight on all other entries proportional to their weight:

𝐴′
𝑜 − 𝐴𝑜 =

(
𝛼𝑜,1

𝐿𝑆′𝑜
· 𝛼𝑜,𝜏★

𝐿𝑆𝑜

𝛼𝑜,2

𝐿𝑆′𝑜
· 𝛼𝑜,𝜏★

𝐿𝑆𝑜
. . . −𝛼𝑜,𝜏★

𝐿𝑆𝑜
. . .

)
=

(
𝛼𝑜,1

𝐿𝑆′𝑜

𝛼𝑜,2

𝐿𝑆′𝑜
. . . −1 . . .

)
· 𝛼𝑜,𝜏★

𝐿𝑆𝑜

=(𝐴′
𝑜 − 𝜄𝜏★) ·

𝛼𝑜,𝜏★

𝐿𝑆𝑜

The change in the occupational wage vector of a worker 𝑖 arises is a function of this change:

Δ𝑤𝑖 ,𝑜 = 𝑤′
𝑖 ,𝑜 − 𝑤𝑖 ,𝑜 = Δ𝜇𝑜 + (𝐴′

𝑜 − 𝐴𝑜)𝑠 + Δ𝜀𝑖

= Δ𝜇𝑜 +
𝛼𝑜,𝜏★

𝐿𝑆𝑜

©­«
∑
𝒯𝑙\𝜏★

𝛼𝑜,𝜏

𝐿𝑆𝑜 − 𝛼𝑜,𝜏★
𝑠𝑖 ,𝜏 − 𝑠𝑖 ,𝜏★

ª®¬ + Δ𝜀𝑖 (9)

where

Δ𝜇𝑜 =
𝛼𝑜,𝜏★

𝐿𝑆𝑜 − 𝛼𝑜,𝜏★

(
𝑧𝜏★ − log 𝑟 + 𝜇𝑜

)
.

Equation (9) captures two important terms. First, workers are more likely to see increases in their

origin-occupation wage when Δ𝜇𝑜 is large. This effect captures both the negative displacement

and the positive productivity effects which together fully characterize the effects of automation

in the canonical task-based model. In our model, a second important effect shapes earnings

responses: the shift in task weights, which we refer to as job transformation. This second

component depends on the worker’s task-specific skills: Workers are more likely to benefit if they

are relatively unskilled in automated task relative to other tasks, where the latter are weighted by

13



the loadings of their current occupation.23

Partial automation. This way of conceptualizing automation nests the case where a skill be-

comes partially automated. A skill is said to be partially automated when 𝐴𝑜 changes in a way

that does not set the loading of the automated skill to zero:

𝐴′
𝑜 − 𝐴𝑜 =(𝐴′

𝑜 − 𝜄𝜏★) ·
𝛼𝑜,𝜏★

𝐿𝑆𝑜
· 𝛿𝜏★ , 𝛿𝜏★ ∈ (0, 1)

To interpret this case, suppose 𝜏★ comprises two distinct tasks instead of one. We effectively

suppose workers’ skills for these two tasks are always identical – that is, perfectly correlated with

identical skill means and standard deviations – but only one of the two tasks can be automated.

2.3.2 The role of task bundling

We just saw that in our model automation affects wages by altering the task content of occu-

pations. We next explain that these effects distinctively arise when the economy exhibits task

bundling; that is, multiple tasks are performed concurrently within the same occupation. We

use the following nomenclature:

Remark 2 (Task bundling.). An occupation features task-bundling if

|{𝜏 ∈ 𝒯𝑙 : 𝛼𝑜,𝜏 > 0| > 1.

Conversely, the economy features a no bundling property if no occupation features task-bundling:

|{𝜏 ∈ 𝒯𝑙 : 𝛼𝑜,𝜏 > 0| = 1 ∀𝑜 ∈ 𝒪.

In a no-bundling economy, there exists an assignment function 𝑔 : 𝒪 → 𝒯 that pins down the

unique task required in any given occupation.24 In this case, the wage equation reduces to

𝑤𝑖 ,𝑜,𝑡 = 𝜇𝑜 + 𝑠𝑖 ,𝑔(𝑜) + 𝜖𝑖 ,𝑜,𝑡 . (10)

In a no-bundling economy, workers in an occupation 𝑜 subject to automation thus experience

wage changes that are solely driven by changes in the occupation-specific shifter, i.e. Δ𝜇𝑜 . The

23This mechanism mirrors the analysis of team complementarities under skill specialization in Freund (2023):
Your productivity is enhanced by a coworker – whether human or artificial – insofar as their presence enables you to
focus on those task you are best at; and the magnitude of this complementarity effect is increasing in the degree of
skill specialization.

24A special case of this is the case where 𝐴 = 𝐼. With this case, our model nests the standard Roy model. Note that
occupations having the same 𝐴𝑜 is not sufficient for them to be perfect substitutes from a worker’s perspective, as
they may involve labor shares or different machine tasks with differing productivities.
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wage changes are, thus, driven by the well-understood balance between negative displacement

effect, associated with a declining labor share, and positive productivity effects, driven by �̄�𝜏★.25

Crucially, workers do not experience any effects from a changing task mix of their occupa-

tion. Moreover, conditional on staying in the same occupation, all workers in an occupation

experience the same wage change.

In contrast, under task bundling, individual wages change also because automation shifts the

task content of their occupation. Equation (9) describes these effects for an individual worker.

The next section offers a characterization of these wage effects due to job-transformation.

2.3.3 The distributional effects of automation

We next characterize the economy-wide distributional effects of automation in the presence of

task bundling by deriving a transparent decomposition of occupation-level wage changes due to

automation.26

Remark 3 (Occupational wage change.). The occupation-level average wage change arising from

automation is

E[𝑤′
𝑜 | �̂�′ = 𝑜] − E[𝑤𝑜 | �̂� = 𝑜]

=

Δ𝑤𝑜 of incumbents︷                            ︸︸                            ︷
E[𝑤′

𝑜 | �̂� = 𝑜] − E[𝑤𝑜 | �̂� = 𝑜] +

re-sorting︷                             ︸︸                             ︷
E[𝑤′

𝑜 | �̂�′ = 𝑜] − E[𝑤′
𝑜 | �̂� = 𝑜]

=

Δ𝑤𝑜 of incumbents︷                                                                     ︸︸                                                                     ︷
Δ𝜇𝑜︸︷︷︸

productivity and displacement

+ (𝐴′
𝑜 − 𝐴𝑜) · 𝑠︸         ︷︷         ︸
task shift

+ (𝐴′
𝑜 − 𝐴𝑜)(𝑠 |𝑜 − 𝑠)︸                ︷︷                ︸

selection

+ E[𝑤′
𝑜 | �̂�′ = 𝑜] − E[𝑤′

𝑜 | �̂� = 𝑜]︸                             ︷︷                             ︸
re-sorting

25For a detailed review see Acemoglu et al. (2025). A subtle difference in the operation of the positive productivity
effects compared to the canonical model is worth noting. For example, in Acemoglu and Restrepo (2022, cf.
equations (6) and (13)), the productivity effect raises the wages of all workers. What underlies this feature is the
assumption that substitution across all tasks is governed by a uniform elasticity parameter. In contrast, in our model,
production occurs at the level of occupations, so automation carries no positive productivity effects for occupations
that do not utilize the automated task.

26We rely on Laplace approximations to derive our results in this section. This method approximates a posterior
distribution with an appropriately chosen multivariate normal distribution. Details are in Appendix A.2.
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and thus

E[𝑤′
𝑜 | �̂�′ = 𝑜] − E[𝑤𝑜 | �̂� = 𝑜]

=

Δ𝑤𝑜 of incumbents︷                                                                                                 ︸︸                                                                                                 ︷
Δ𝜇𝑜︸︷︷︸

productivity and displacement

+ (𝐴′
𝑜 − 𝐴𝑜) · 𝑠︸         ︷︷         ︸
task shift

+ 𝜈−1(𝐴′
𝑜 − 𝐴𝑜)Σ

(
𝐴
⊺
𝑜 −

∑
𝑜′′

ℎ𝑜′′(𝑠 |𝑜)𝐴⊺𝑜′′

)
︸                                            ︷︷                                            ︸

selection

+ 𝜈−1𝐴′
𝑜Σ

©­«
(
(𝐴′

𝑜 − 𝐴𝑜)⊺ −
∑
𝑜′′

(
ℎ′𝑜′′(𝑠′|𝑜)(𝐴

′
𝑜′′)⊺ − ℎ𝑜′′(𝑠 |𝑜)𝐴⊺𝑜′′

))ª®¬︸                                                                          ︷︷                                                                          ︸
re-sorting

. (11)

where

𝑠 |𝑜 = 𝑠 + 𝜈−1Σ

relative task intensity of occupation 𝑜︷                       ︸︸                       ︷(
𝐴
⊺
𝑜 −

∑
𝑜′′

ℎ𝑜′′(𝑠 |𝑜)𝐴⊺𝑜′′

)
(12)

is the posterior skill mean of workers choosing occupation 𝑜 and

ℎ𝑜(𝑠) =
exp(𝜈−1𝜇𝑜′ + 𝜈−1𝐴𝑜′ · 𝑠)∑
𝑜′′ exp(𝜈−1𝜇𝑜′′ + 𝜈−1𝐴𝑜′′ · 𝑠)

(13)

is the employment share of occupation 𝑜 for workers with skill 𝑠.

The first line of equation (11) captures occupational wage effects when worker composition

is held constant. The second line captures wage changes from worker re-sorting into and out of

occupation 𝑜. We discuss each term individually.

• The first term captures the net impact of the standard displacement and productivity effects.

These effects operate even without task bundling, whereas the remaining terms are unique

to economies with task bundling.

• The task shift effect captures how shifts in occupational task weights alter the productivity

of an average worker and therefore wages. These effects can be positive when the task com-

position of the occupation shifts to more productive tasks (“task upgrading”) or negative

otherwise (“task downgrading”).

• The selection term captures that incumbent workers in occupation 𝑜 may have skills

different from the population average and therefore respond differently to automation.
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Equation (12) characterizes the posterior mean skill of those choosing occupation 𝑜: it

exceeds 𝑠 for those tasks used more intensively in 𝑜, especially for tasks with high skill

variance. The selection effect tends to be negative for more exposed occupations, since for

these occupations 𝐴𝑜 has larger positive entries exactly where (𝐴′
𝑜 − 𝐴𝑜) is negative. This

effect strengthens when selection into automated skills is stronger, which occurs when 𝜈 is

low and when skill dispersion is high for the automated task.

• The re-sorting effect captures that workers choosing occupation 𝑜 after automation may

have a different skill distribution than before. For exposed occupations, the sign is generally

positive under full automation. The effect strengthens when skills, especially heavily

utilized non-automated skills, are more dispersed. It can also be more pronounced for

more dispersed automated skills when they correlate negatively with other skills heavily

utilized in affected occupations.

This decomposition illustrates that the effects of automation, especially as they relate to the

implications of task bundling, depend in a critical way on the underlying distribution of worker

skills 𝑠; that is, both the skill means 𝑠 and the co-variance matrix Σ𝑠 are informative about the

properties of different types of automation shocks. A quantitative assessment of such shocks

thus requires a careful estimation of these objects using real-world data. As we show in the

following sections, our model provides a natural framework for this estimation.

3 Theory Meets Data

We now take the theoretical model to data. We begin by describing the theoretical foundations

for our approach to estimating the model’s parameters (Section 3.1), then explain its empirical

implementation (Section 3.2), validate it in Monte-Carlo exercises (Section 3.3), and finally

present the estimation results alongside a comparison of the model along a few important

empirical dimensions (Section 3.4).

3.1 Estimation methodology

To estimate the parameters of the model, the following data are required: (i) a panel of workers,

indexed by 𝑖, for whom both occupational choices �̂�𝑖 ,𝑡 and wages 𝑤𝑖 ,�̂�𝑖 ,𝑡 ,𝑡 are observed over time;

(ii) the occupational task weight matrix 𝐴, as defined in Remark 1; as well as (iii) a measure of

occupation-level labor shares 𝐿𝑆𝑜 . While (i) and (iii) are relatively weak data requirements27, (ii)

27We discuss the construction of occupation-level labor shares in Appendix B.3.
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is more involved. We argue that it is possible to obtain good measures of (iii) directly from the

data and discuss the construction of our empirical measure of 𝐴 in Section 3.2.

Conditional on observing (i)-(iii), we make two identifying assumptions. First, we assume

that the model is in steady state throughout our estimation window. Second, in the initial steady

state there is only one composite machine task with productivity normalized to log 𝑟. This

implies that the intercept term

𝜇𝑜 =
∑
𝜏∈𝒯

𝛼𝑜,𝜏∑
𝜏∈𝒯𝑙 𝛼𝑜,𝜏

log
(
𝛼𝑜,𝜏

)
+ ©­«

∑
𝜏∈𝒯𝑚

𝛼𝑜,𝜏∑
𝜏∈𝒯𝑙 𝛼𝑜,𝜏

(𝑧𝜏 − log 𝑟)ª®¬
=

∑
𝜏∈𝒯𝑙

𝐴𝑜,𝜏 log
(
𝐴𝑜,𝜏 · 𝐿𝑆𝑜

)
+ 1 − 𝐿𝑆𝑜

𝐿𝑆𝑜
(log 𝐿𝑆𝑜)

depends only on occupational labor shares 𝐿𝑆𝑜 =
∑

𝜏∈𝒯𝑙 𝛼𝑜,𝜏 and elements of 𝐴 and is therefore

observable for all occupations.

Under these conditions, we can estimate the model with maximum likelihood techniques.

In what follows, let �̂�𝑖 ,𝑡 denote the recorded occupation choice of worker 𝑖 in period 𝑡 and −�̂�𝑖 ,𝑡
be the set of occupations not chosen in period 𝑡. Let 𝐴 be the matrix defined in (7). For a given

worker observed in occupations (�̂�𝑜,1, . . . , �̂�𝑖 ,𝑇) and earning wages (𝑤𝑖 ,�̂�1 ,1, . . . , 𝑤𝑖 ,�̂�𝑇 ,𝑇),

©­­­­­­­­­­­«

𝑠1
...

𝑠𝑛skill

𝑤𝑖 ,�̂�1 ,1
...

𝑤𝑖 ,�̂�𝑇 ,𝑇

ª®®®®®®®®®®®¬
=

©­­­­­­­­­­­«

0
...

0

𝜇�̂�1
...

𝜇�̂�𝑇

ª®®®®®®®®®®®¬
+

(
𝐼 0

𝐴(�̂� ,...,�̂�𝑇 ),· 𝐼

)
·

©­­­­­­­­­­­«

𝑠1
...

𝑠𝑛skill

𝜀𝑖 ,1
...

𝜀𝑖 ,𝑇

ª®®®®®®®®®®®¬
, where

©­­­­­­­­­­­«

𝑠1
...

𝑠𝑛skill

𝜀𝑖 ,1
...

𝜀𝑖 ,𝑇

ª®®®®®®®®®®®¬
∼ 𝒩

©­­­­­­­­­­­­«

©­­­­­­­­­­­«

𝑠1
...

𝑠𝑛skill

0
...

0

ª®®®®®®®®®®®¬
,

(
Σ𝑠 0

0 𝜍2𝐼

)ª®®®®®®®®®®®®¬
.

Thus, 𝑤𝑖 ,�̂�𝑖 ,· ,· and 𝑠𝑖 are jointly normal and thus yields easy to compute formulas for the distribu-

tion of 𝑠𝑖 |𝑤𝑖 ,�̂�𝑖 ,· ,·. The likelihood of observing (𝑤𝑖 ,�̂�𝑖 ,· ,· , �̂�𝑖 ,·) is then given by

ℒ(𝑤𝑖 ,�̂�𝑖 ,· ,· , �̂�𝑖 ,· |𝜈, 𝜍, 𝑠 ,Σ𝑠) =
∏
𝑖

∫
𝑠

[ (∫
𝑤𝑖 ,−�̂�· ,·

∏
𝑡

𝑃(�̂�𝑖 ,𝑡 |𝑤𝑖 ,·,𝑡 , 𝜈) · 𝑓 (𝑤𝑖 ,−�̂�𝑖 ,𝑡 ,𝑡 |𝑠, 𝑤𝑖 ,�̂�𝑖 ,· ,· , 𝜍)
)

· 𝑓 (𝑠 |𝑤𝑖 ,�̂�𝑖 ,· ,· , 𝜍, 𝑠 ,Σ𝑠)
]
· 𝑓 (𝑤𝑖 ,�̂�𝑖 ,· ,· |𝜍, 𝑠 ,Σ𝑠)

This expression involves a high-dimensional integral which makes it intractable. To overcome

this challenge, we use Monte Carlo integration to compute a numerical approximation of the
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likelihood instead of evaluating this expression analytically. That is, instead of maximizing

the analytical likelihood, we instead maximize the mean of a simulated statistical object that

converges to the likelihood value for large sample sizes, 𝑛0. It can be shown that, as 𝑛0 → ∞, the

argmax of this object converges to the true maximum likelihood estimate under mild regularity

conditions. We find that, in practice, 𝑛0 = 40 yields a sufficiently accurate approximation to

deliver satisfactory results in a Monte Carlo exercise, which we report below.

Concretely, our implementation of this idea is as follows: For all individual workers 𝑖, we generate

𝑛0 draws from

𝑓 (𝑤𝑖 ,−�̂�𝑖 ,· ,· |𝑤𝑖 ,�̂�𝑖 ,· ,· , 𝜍, 𝑠 ,Σ𝑠) =
∫
𝑠

𝑓 (𝑤𝑖 ,−�̂�𝑖 ,· ,· |𝑠, 𝑤𝑖 ,·,�̂�𝑖 ,· , 𝜍) 𝑓 (𝑠 |𝑤𝑖 ,�̂�𝑖 ,· ,· , 𝜍, 𝑠 ,Σ𝑠).

These draws can be generated by (i) drawing from the distribution 𝑠𝑖 |𝑤𝑖 ,�̂�𝑖 ,· ,·, (ii) computing 𝜀𝑖 ,𝑡
for every period (as a deterministic function of 𝑠𝑖 and 𝑤𝑖 ,�̂�𝑖 ,𝑡 ,𝑡), and (iii) computing the resulting

vector of all occupational wages in every period. Using these wages, we then evaluate the mean

of 𝑃(�̂�𝑖 ,𝑡 |𝑤𝑖 ,�̂�𝑖 ,· ,· , 𝜈) to obtain an estimator for ℒ𝑖(𝜃):

ℒ̂𝑖(𝑤𝑖 ,�̂�𝑖 ,· ,· , �̂�𝑖 ,· |𝜈, 𝜍, 𝑠 ,Σ𝑠) = ©­« 1

𝑛0

∑
𝑗

∏
𝑡

𝑃(�̂�𝑖 ,𝑡 |𝑤 𝑗 ,·,𝑡 , 𝜈)ª®¬ · 𝑓 (𝑤𝑖 ,�̂�𝑖 ,· ,· |𝜍, 𝑠 ,Σ𝑠)

Holding constant all random variables in the estimator, we then proceed to maximize this

objects over the parameter space 𝜃 = (𝑠,Σ𝑠 , 𝜈, 𝜚). This parameter space is large and requires

efficient numerical optimization methods. We utilize stochastic gradient descent paired with

auto-differentiation techniques that allow us to efficiently compute gradients of ℒ̂𝑖 . Details are

relegated to Appendix C.1.

3.2 Data & measurement

As noted, we require three data sources: a worker panel with information on wages and occu-

pational choices, the occupational task weight matrix 𝐴, and occupational labor shares. For

the worker panel we use the National Longitudinal Survey of Youth (NLSY) 1979. We construct

the task weight matrix from a list of detailed occupational tasks from O*NET and by leveraging

natural language processing (NLP) tools as well as large language models (LLMs). Lastly, we

construct occupational labor shares using data from the Bureau of Economic Analysis (BEA).

This section explains data sources and processing in detail.

NLSY. The NLSY 1979 tracks 6,033 workers’ occupations and wages between 1979 and 2018,

comprising 110,618 total observations. We construct an annual panel comprising each individ-
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ual’s primary job (if any), where in the case of multiple jobs the “primary job” is selected based

on weekly hours worked. Wages are deflated using the CPI (1982-1984=100). We drop individuals

in the military sample and the minority oversample. Following Lise and Postel-Vinay (2020), we

create a harmonized occupational classification at the SOC-2000 level using crosswalks from

Sanders (2012). We use the “minor groups” of occupations, of which there are 93 in our data.

Tasks & occupational task weights. We construct the occupational task weight matrix 𝐴 de-

fined in Remark 1 in two main steps. In step one, we cluster approximately 20,000 detailed tasks

with similar skill requirements using NLP. In step two, we measure the occupational allocation

of time across these task clusters using LLMs. Figure 1 summarizes this workflow, and Figure 2

illustrates the mapping from tasks to clusters with examples. Appendices B.1 and B.2 contain

further details on the use of clustering algorithms and LLMs.

Our starting point is the list of 18,796 detailed, occupation-specific tasks in the O*NET

database (version 29.2). Using this granular list of tasks is instrumental for our purposes, as

many technology-specific task automation exposure measures use this list as a reference point,

enabling us to use these exposure measures in Section 4.1 to identify technology- and task-

specific automation shocks. In step one, we group these detailed tasks into a set clusters that we

use as the empirical analogue to the set of human-performed tasks 𝒯𝑙 . Our methodology aims to

group together tasks with similar skill requirements — if a person is proficient in one detailed

task from cluster 𝜏, they should also be able to perform another task assigned to 𝜏 equally well.

The constraint we confront is that O*NET provides limited meta-data, and specifically no skill

requirements, for the detailed tasks.

We process these task statements using a multi-stage NLP pipeline. We start by feeding them

through OpenAI’s ChatGPT-4o model to identify the core activity and the 1-5 essential skills

required to be productive in the task. Next, we create word embeddings of these skill requirement

descriptions —representations of their semantic content in a high-dimensional vector space —

using Alibaba’s GTE transformer model (gte-Qwen2-1.5B-instruct). This enables us to cluster

detailed tasks by applying a hierarchical density-based clustering algorithm (HDBSCAN, McInnes

et al. (2017)) to the embeddings. This yields a set of 38 clusters.28

To interpret the resulting clusters, we use OpenAI’s o3-mini-high model, feeding it represen-

tative examples from each cluster and prompting it to generate descriptive labels and concise

summaries that capture the underlying skill requirements.29 Appendix Table B.1 gives examples

28Two remarks about the HDBSCAN algorithm are in order. First, tasks that don’t contribute to any stable cluster
are automatically classified as noise; we drop these tasks from our analysis. Second, the algorithm automatically
determines the number of clusters 𝑘 through a hierarchical approach based on cluster stability, unlike the familiar
k-means algorithm where 𝑘 is a user input.

29We explored several alternatives, including clustering on the raw embeddings for the detailed task statements. In
practice, however, this approach leads to clusters of tasks that share a similar context (e.g., “hospital”) but have very
different skill requirements. For example:“Provide and manage long-term, comprehensive medical care, including
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ONET:
~19'000 task
statements

Skill requirements

Core activity

Embeddings Task clusters

LLM

Cluster labels and
descriptions

SOC-2000
occupations

A Time diaries

Trans-
former

HDB-
SCAN

LLM

Theory

LLM

Figure 1: Schematic overview of the measurement of tasks and the 𝐴 matrix

Notes. Step 1 (colored in blue) involves the clustering of tasks, step 2 (colored in green) the measurement of
occupational task weights.

of the core activity and skill requirements extracted for several detailed tasks as well as the

resulting cluster. Appendix Table B.2 lists all 38 task clusters.

In step two, we then construct the occupational task weight matrix 𝐴. The theory guides

measurement, as equation (3) indicates that each entry of the 𝐴 matrix corresponds to the

optimally chosen share of time allocated to task 𝜏 in any occupation 𝑜. We measure these shares

across our 38 task categories – which we describe in terms of labels as well as the summary

descriptions derived above – by prompting OpenAI’s o3-mini-high model to construct time

allocation diaries for each occupation. Appendix B.2 details our LLM prompts.

The 𝐴 matrix thus obtained corroborates the importance of task bundling and has intuitive

properties. Only 2 of occupations have a single task comprising more than half of incumbents’

time, and in fewer than 30% of occupations does a single task account for more than a quarter of

total time. Figure 3 visualizes 𝐴. For visualization purposes, we bi-cluster tasks and occupations,

grouping similar categories together, as indicated by the white dividing lines. The 𝐴 matrix

exhibits sparsity with intuitively aligned entries. For instance, “Performing detailed manual tasks”

appears as a prominent task across both service sector occupations, like “Food and Beverage

Serving Workers” and manufacturing roles, like “Assemblers and fabricators.” However, the

former, service-sector occupations additionally emphasize tasks like “Providing customer service”

while the latter, manufacturing-oriented jobs involve more technical tasks like "Operating,

Calibrating, and Inspecting Equipment.”

diagnosis and nonsurgical treatment of diseases, for adult patients in an office or hospital.” versus “Report facts
concerning accidents or emergencies to hospital personnel or law enforcement officials.”
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We cluster ~20k unstructured, detailed task statements into 38 task categories based on similarity of skill requirements

For each task, we extract skill requirements, create semantic vector embeddings for these requirements using a transformer model, and perform HDBSCAN-clustering 
on these embeddings to create broad task categories. 

38 task 
categories~20k detailed 

O*NET task 
statements

• Smooth rough spots on walls and ceilings, using sandpaper.
• Lubricate moving parts on gate-crossing mechanisms and swinging signals.
• Clean and polish vehicle windows.
• Etc.

Performing Detailed Manual Tasks

• Prepare reports of activities, evaluations, recommendations, or decisions.
• Prepare, examine, or analyze accounting records, financial statements, or other financial reports 

to assess accuracy, completeness, and conformance to reporting and procedural standards.
• Prepare and submit reports and charts to treatment team to reflect patients' reactions and 

evidence of progress or regression.
• Etc.

Processing and Analyzing Records

• Confer with officials of public health and law enforcement agencies to coordinate 
interdepartmental activities.

• Confer with directors and production staff to discuss issues, such as production and casting 
problems, budgets, policies, and news coverage.

• Plan and evaluate new projects, consulting with other engineers and corporate executives, as 
necessary.

• Etc.

Coordinating Project Initiatives

Example task statements from selected clusters Example task categories

Figure 2: Examples of mapping from detailed tasks to clusters

This LLM-powered approach is a useful and flexible tool, but of course invites some immedi-

ate questions: How could the LLM know this information? And are the resulting measurements

reliable? Regarding the first question, LLM training data comprises virtually the entire internet,

including vast amounts of unstructured data on what people across different occupations do

at work, as well as summaries of time diary surveys reported in research papers. Since these

data sources generally do not reference our exact tasks or occupations, and much input data

is qualitative, the LLM’s quantitative output results from interpolation.30 Given the black-box

nature of this data construction, we conduct a battery of exercises to evaluate LLM capability in

constructing occupational time diaries. We summarize them here and refer to appendix B.2.2 for

further information.

First, we compare LLM-generated task weights at the occupation-cluster level to the average

importance rating that O*NET assigns to detailed tasks within each cluster. While O*NET weights

do not directly map onto our A matrix entries — they represent importance rather than time

shares—they are strongly correlated with our baseline measures. Second, we exploit a unique

2012 supplemental survey by the German Federal Institute for Vocational Training (Bundesin-

30Our LLM usage resembles employing a vast pool of research assistants with unlimited time to collect diverse
data sources and make judgment calls in translating them into cardinal time shares.
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stitut fuer Berufsbildung, BIBB) in which workers across many occupations report their time

allocation across 17 tasks. Though the occupations and tasks differ from our baseline analysis,

our LLM-based method is flexible enough to generate time diaries for German BIBB classifica-

tions. This comparison reveals highly correlated time shares between the two approaches. Third,

we use O*NET’s Generalized Work Activities as a task classification, with importance ratings as

weights. LLM-generated time shares for these activities again align strongly with importance

ratings. Finally, we establish LLM internal consistency: occupational task weights constructed

by averaging across constituent minor categories are highly correlated with those derived by

directly querying the model for major groups. Together, these validation exercises confirm

that our LLM-based approach aligns with established measurement frameworks while offering

greater flexibility, notably in task and occupation classifications.

Occupation-level labor shares. Finally, we construct LS𝑜 by combining industry-level data

on value-added and wage payments from the BEA-BLS Integrated Industry-level Production

Accounts with information on wage payments at the industry-occupation level from the BLS

Occupational Employment and Wage Statistics (OEWS) Tables. Concretely, as value-added and

hence labor shares are generally defined and measured at the establishment- or industry-level.

We apportion industry-level value-added to occupations based on their share in an industry’s

total wage bill. Appendix B.3 provides more details.

3.3 Validation: Monte-Carlo exercises

We are now ready to estimate parameters according to the approach outlined in Section 3.1. To

show that this approach indeed robustly identifies the parameters, we preface our estimation

results by conducting a Monte-Carlo exercise. This exercise involves three steps: First, we

generate parameter estimates by applying the methodology described above to the real world

data described in Section 3.2. Second, we generate artificial data from our estimated model

under the parameters estimated in step one. Third, we apply our methodology once more to the

artificially generated data, then compare the resulting estimates with the estimates generated in

step one. If our method correctly recovers the data generating parameters, then the parameters

estimated in step 3 should align well with the parameters estimated in step 1, which are used as

inputs when generating the artificial data.

This exercise corroborates our methodology, with the parameters estimated aligning well

with the data generating process in the simulation (“dgp”). Figure 4 illustrates this comparison,

with each panel showing one set of estimated parameters. We split the skill covariance matrix

into its correlation component (𝐶𝑠 , omitting the diagonal of ones in the figure) and its vector of

standard deviations 𝑆𝑠 ; that is, we decompose it according to Σ𝑠 = diagm(𝑆𝑠) · 𝐶𝑠 · diagm(𝑆𝑠).
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Figure 3: Task weight matrix

Notes. This figure shows the measured 𝐴 matrix; each cell value corresponds to
𝛼𝑜,𝜏∑

𝜏∈𝒯𝑙 𝛼𝑜,𝜏
. To aid visualization, the

matrix is reordered using a spectral co-clustering algorithm, and example tasks and occupations are highlighted.
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Figure 4: Data generating parameters and their estimates

Notes: The horizontal axis displays parameter values used to generate artificial data. The vertical axis
displays corresponding estimated values. “Other parameters” refers to the tuple (𝜈, 𝜍). The black dashed
line is the 45 degree line. The blue dash-dotted line is the line of best fit.

The remaining two panels show the estimated and data generating parameters for the vector of

mean log skills, 𝑠, and the remaining parameters (𝜈, 𝜍), respectively. The fit is generally good;

in particular, we are able to capture the rather large number of parameters governing bi-lateral

skill-correlations quite well.

3.4 Estimation results & model validation

3.4.1 Parameter estimates

For the scalar parameters, we estimate 𝜈 = 0.26 and 𝜍 = 0.43. The estimate of 𝜈 implies

that reducing prospective wages in a given occupation by 1% lowers the odds of choosing this

occupation by about 3.8% since 1
𝜈 ≈ 3.8. 𝜍 = 0.43 indicates that a one-standard-deviation

occupation-specific random productivity shock can raise or lower wages by about 43% in a given

year.
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Next, we investigate the mean and dispersion of skills. Figure 5 documents the estimate of

mean skills 𝑠 and illustrates their dispersion as error bands, which is given by their standard

deviation (𝑆𝑠 where Σ𝑠 = diagm(𝑆𝑠) · 𝐶𝑠 · diagm(𝑆𝑠)). The values of 𝑠 indicate tasks that

are more or less productive on average in the population. For example, “coordinating project

initiatives" and “monitoring and inspecting systems" are tasks that are more productive on

average, whereas for example, “mediating and consulting clients" is associated with lower skill

productivity. However, skills also differ in their dispersion across the worker population. For

example, workers differ most in their capability to “coordinate multifunctional processes” and in

their ability to “produce technical documentation”, but relatively little in their skill for “preparing

and planning meals”, “performing detailed manual tasks”, or “performing physical labor”.

This contrast is interesting from the perspective of the formulas derived in Section 2.3.3. One

one hand, the decomposition of equation (11) indicates that the magnitude of some automation

effects, such as selection and re-sorting effects, depend crucially on skill dispersion. Figure

5, on the other hand, indicates that the dispersion of skills varies widely with the type of task

being automated. Specifically, traditional, pre-AI types of automation, which primarily affected

manual tasks (e.g., “performing detailed manual tasks” or “performing physical labor”) automate

skills for which we estimate a low skill dispersion. The advent of AI technologies, meanwhile, has

brought about prospects of skill automation for those skills which are much more dispersed. We

will come back to this discussion in Section 4, when we talk about the implications of various

types of automation shocks.

Lastly, we estimate the full correlation matrix 𝐶𝑠 of all pairwise skills. This matrix is displayed

in Appendix C.2.31

3.4.2 Model properties

We now describe the properties of the estimated model, starting with properties of the wage

distribution.32 In the data, the standard deviation of log wages is 0.60. Decomposing the total

variance of log wages into within-occupation and between-occupation components, the within-

term accounts for 71.5% of variation and the between term for 28.5%. The model does a solid job

in matching these moments: The overall standard deviation is 0.70, with the within and between

terms accounting for 18.6% and 81.4% of the total variance, respectively.

Turning to occupational choice, workers sort into occupations on the basis of task-level

comparative advantage: In the model, workers sort into jobs that emphasize tasks where they

31It is difficult to directly validate the plausibility of any given correlational estimate. However, the Monte Carlo
exercises conducted in Section 3.3 indicate that we are able to obtain a robust estimate of the correlation structure
for any pair of tasks.

32All results are based on a simulation of 50,000 workers.
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Figure 5: Estimated mean skills and dispersion

Notes: Dots show point estimates for mean log skills 𝑠𝜏 by category 𝜏. Plotted intervals cover one
standard deviation of the corresponding marginal distribution in each direction. Tasks are ordered by
increasing skill dispersion.
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Figure 6: Occupational transition matrix: model vs. data

Notes. This figure compares the model-generated entries of the transition matrix to those derived from the NLSY.
The left panel is a binned scatter plot of diagonal entries, the right panel a binned scatter of off-diagonal entries.

possess relative skill advantages. For example, workers choosing to become Top Executives

exhibit notably higher specialization in “‘Coordinating Strategic Initiatives” – a task with a

disproportionately high weight in this occupation – compared to the unconditional distribution

of workers. This reflects the type of sorting captured in equation (12). Figure C.2 in the appendix

provides an illustration.

What are the patterns of occupational switches in the estimated model, and how do they

compare to the data? Figure 6 compares the model-implied occupational transition matrix

entries to those observed in the NLSY. The model generates positive correlations with data in

terms of both staying probabilities (diagonal elements, 0.36) and switching probabilities (off-

diagonal elements, 0.41). While the model captures the directional pattern of occupational

transitions, it notably under-predicts persistence in the same occupation: The average annual

staying probability is 18%, well below the 63% measured in the NLSY. This gap likely reflects the

absence of switching frictions or costs in our current specification, where transitions are driven

purely by relative skill advantages and preference shocks.

An important piece of validation for our task-based model are its distinctive predictions for

the effect of skill specialization on the frequency and the direction of occupational switches, which

we show are at least qualitatively consistent with the data. First, the empirical evidence suggests

that skill specialization tends to generate persistence in occupational choice (Kambourov and

Manovskii, 2008; Geel et al., 2011). Consistent with this idea, our theory implies that individuals

with more specialized skills tend to move less. Our measure of individual skill specialization is

the within-worker coefficient of variation of skills. Figure 7a shows that greater specialization is
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Figure 7: Specialization shapes the frequency and direction of moves

Notes. The left panel is a binscatter of individual-level observations, relating the normalized frequency of occupation
switches to the coefficient of variation of skills. The right panel plots the observed density of distances conditional
on switching occupation (solid line) and that under the random-mobility benchmark described in the text (dashed
line).

associated with a decreasing probability of switching occupation in any given period.

Next, consider the direction of moves conditional on occupational switching. Gathmann

and Schönberg (2010) show, using German worker panel level data, that workers are more likely

to move to occupations with similar task requirements. Whereas this relationship cannot be

rationalized by models featuring skills that are either one-dimensional or fully occupation-

specific, it is successfully reproduced by our model. To illustrate this property, we replicate the

analysis conducted by Gathmann and Schönberg (2010) using data generated from our model.

Concretely, we compare the realized distribution of between-occupation distances traveled in

the space of tasks to that we would observe if mobility was random. The distance between any

two occupations 𝑜 and 𝑜′ is one minus the angular separation of the task-weight vectors. Further,

under the random mobility benchmark, only the relative size of occupations influences the

direction of moves. Figure 7b demonstrates that under the observed distribution of distances

more density is concentrated at shorter distances than under the random-mobility benchmark.

In summary, the estimated model, despite its simplicity, does a solid job at matching the

wage distribution and captures important features of the relationship between task-specific skills

and job mobility.
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4 The Labor Market Effects of LLMs

We are now in a position to use the estimated model to evaluate the distributional wage effects of

an automation shock. Section 4.1 explains how we leverage prominent task exposure measures

from the literature to identify which tasks to shock in the model. Section 4.2 evaluates occupation-

level effects and decomposes them following the method derived in Section 2.3.3. Section 4.3

quantifies the consequences of automation at the individual level. Section 4.4 offers a brief

discussion of the appropriate interpretation of our results.

4.1 Identifying task-specific automation shocks

Quantifying automation-induced earnings effects for technologies currently being rolled out, or

to be adopted in the future, requires knowledge of which tasks are being, or will be, automated.

This represents a non-trivial challenge. Unlike backward-looking studies, we cannot rely on

labor share changes to measure automation in industries or occupations. Moreover, even if

such changes could be constructed, they would not reveal which specific tasks within industries

or occupations face automation. As highlighted in Section 2.3.3, this granular knowledge is

essential for capturing job transformation effects.

Our methodology overcomes this challenge by providing a direct mapping between our model

tasks ——constructed from detailed O*NET tasks — and empirical measures of technology-

specific, task-level automation exposure from a burgeoning literature using data sources ranging

from patent data (Webb, 2019) and capability-specific AI benchmarks (Felten et al., 2021) to

expert and machine judgment (Eloundou et al., 2023). Our model can link directly to any

exposure measure at the detailed O*NET task level.

Motivated by the rapid diffusion of large language models (LLMs) with increasingly advanced

capabilities (Bick et al., 2024), we focus on this technology in our headline analysis. To iden-

tify which tasks are most likely automated through LLMs, we draw on Eloundou et al. (2023),

who quantify O*NET task exposure to LLM automation using human labeling and GPT-4 clas-

sifications. We aggregate their scores to our task cluster level by averaging.33 Figure 8 shows

the resulting exposure scores for our task clusters, ordered by descending exposure. The most

exposed categories are "Processing and Analyzing Records" and "Maintaining and Managing

Records," followed by "Reviewing and Editing Information" and "Producing Technical Docu-

mentation." The first two clusters include detailed, occupation-specific tasks such as "Compute

33We focus on the automation rubric specifically, rather than the general exposure rubric. Eloundou et al. (2023)
quantify exposure using five categorical bins. To convert these to numerical scores between 0 and 1, we use the
authors’ mapping: T0 (no automation exposure) receives a score of 0, T1 receives 0.25, T2 receives 0.5, T3 receives
0.75, and T4 (full automation exposure) receives 1.
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Figure 8: Eloundou et al. (2023) exposure scores aggregated to task clusters

Notes. This chart shows the exposure of the task clusters to LLM automation based on the aggregated exposure
scores provided by Eloundou et al. (2023). . The size of each bubble indicates the number of detailed O*NET tasks
contained in each cluster. For example, the two most exposed task clusters are “Processing and Analyzing Records”
(a cluster comprising 170 detailed tasks with average exposure of 0.66) and “Maintaining and Managing Records”
(470 tasks with average exposure score 0.59).

payment schedules" and "Prepare reports showing places of departure and destination, pas-

senger ticket numbers, [...]" or "Maintain and update human resources documents, such as

organizational charts, [...]" and "Organize archival records and develop classification systems to

facilitate access to archival materials," respectively.

To contextualize the model-implied labor market consequences of LLMs, we compare them to

those from automation by industrial robots. Our approach’s flexibility allows us to measure robot

automation exposure for our task clusters by linking them to Webb (2019) exposure measures.

Webb (2019) construct task automation exposure measures using the overlap between job task

descriptions and patent text.34 This methodology identifies "Performing Detailed Manual Tasks"

as the most robot-exposed task cluster—comprising detailed occupation-specific tasks such

as "Lubricate moving parts" and "Remove excess materials or impurities from objects, using

air hoses or grinding machines"—followed by "Performing Physical Labor," which includes

tasks like "Hammer out bulges or bends in metal workpieces" and "Dump refuse or recyclable

materials at disposal sites." Appendix B.4 provides more details.

34Many thanks to Mike Webb for sharing the exposure scores at the task level.
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Figure 9: LLM automation – occupation-level effects

Notes. Left panel: Each dot is an occupation. The vertical axis measures the average occupational wage change
before versus after the shock. The horizontal axis measures shock exposure 𝐴𝑜,𝜏. Dot sizes correspond to pre-shock
employment shares. The dotted line is the line of best fit. Right panel: Bin scatter of occupational effect size
according to equation (11) by shock exposure 𝐴𝑜,𝜏. Note that the x-axis range differs across the two panels.

4.2 Occupation-level effects & their limits

We begin by studying what happens to occupation-level wages when "Processing and Analyzing

Records" is fully automated.35 We assume that machine productivity in the automated task, 𝑧𝜏∗ ,

is at its automation threshold, defined in Appendix A.1. Panel (a) of Figure 9 plots occupational

wage changes from automating this task against occupational exposure, measured by 𝐴𝑜,𝜏. The

figure shows that occupational wage effects tend to be positive. More exposed occupations

experience larger wage gains on average. Occupations with the highest loadings on the auto-

mated task, such as Financial Clerks and Information and Record Clerks, experience the largest

increases in average occupational wages.

The decomposition in equation 11 provides a natural framework to explain these effects.

Panel (b) of Figure 9 presents the estimated decomposition terms as a bin scatter, plotting the

average magnitude of each effect against occupational exposure. The figure shows that these

positive effects are not driven by traditional displacement and productivity effects captured

by Δ𝜇𝑜 ; indeed, these terms tend to be more negative for more exposed occupations. This

negative effect, however, is offset by three job transformation effects: task shifting, selection, and

re-sorting.

First, automating "Processing and Analyzing Records" leads to task upgrading, indicated by

positive task shift effects. Full automation frees up production time and allows workers to spend

35Appendix C.2.2 shows that results are similar when considering the closely related task “Maintaining and
Managing Records.” Sometimes we refer to them jointly as information-processing tasks.
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more time on tasks where the average worker is more productive. This increases productivity

and average occupational wages. The effect is stronger for more exposed occupations, where

more time is freed by automation.

Second, selection effects have ambiguous effects on average wages as exposure grows. This

shows that selection plays a subtle role: For “Processing and Analyzing Records,” workers se-

lect into exposed occupations based on the automated skill but also on skills other than the

automated one. When automation occurs, selection effects are thus ambiguous, hurting some

workers while benefiting others. Selection effects benefit workers who initially select occupa-

tions based on non-automated skills but harm workers who select mainly on automated skills.

Appendix C.2 shows this result is somewhat unique to this task: other automation types can

generate much more pronounced negative wage effects for most incumbents. Across shocks,

selection effects rarely generate wage gains in affected occupations.

Third, re-sorting effects drive much of the average wage gains and are the primary driver for

the most affected occupations. This indicates that the shock generates significant labor market

"turbulence." The composition of workers in the most exposed occupations changes drastically

as automation hits: existing workers leave and new workers enter as the type of work changes.

The magnitude of re-sorting among the most exposed occupations suggests that occupa-

tional averages may lack economic meaning and provide poor guidance for understanding

individual-level effects. We therefore ask under what conditions re-sorting effects are large. To

understand this, we compare all 38 possible full automation shocks by the slope they induce in

their respective versions of Figure 9. For each shock, we examine how much more exposed occu-

pations experience larger re-sorting effects. Figure 10 plots these measures against the dispersion

of the associated skill. Orange highlights the two tasks most exposed to AI in our aggregation of

Eloundou et al. (2023). Gray highlights the tasks most exposed to robots in our aggregation of

Webb (2019). Figure 10 reveals a clear pattern: shocks affecting highly dispersed skills generate

larger re-sorting effects; shocks affecting less dispersed skills produce small re-sorting effects.

Equation 11 explains why: shocks to highly dispersed skills feature larger re-sorting effects when

negatively correlated with other high-dispersion skills strongly utilized by affected occupations.

This holds for our estimated parameters.36

Importantly, our estimation suggests AI-exposed tasks ("Processing and Analyzing Records,"

"Reviewing and Editing Information") tend to be associated with larger skills dispersion than is

the case for tasks automated by industrial robots ("Performing Detailed Manual Tasks," "Per-

forming Physical Labor"). Occupation-level averages therefore provide worse guidance for

worker-level outcomes under AI-driven automation than under historical robot automation.

In sum, AI-driven automation leads to positive average wage effects for the most exposed

36Appendix C.2 discusses how automation shock properties also affect selection and task-shifting effects.
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Notes. Each dot corresponds to a task. The horizontal axis displays the estimated skill dispersion of the task,
𝑆𝑠,𝜏. The vertical axis displays the coefficient of a regression that regresses the magnitude of the re-sorting effect
from full automation for a given occupation on its exposure 𝐴𝑜,𝜏, weighting coeffcients by pre-shock occupational
employment.

occupations, driven by task upgrading and a changing pool of workers. The latter force suggests,

however, that pre-shock incumbents may not be the primary beneficiaries of these positive wage

changes. To evaluate this conjecture, the next section turns to an analysis of individual-level

effects. While these effects do not admit elegant closed-form characterization, many insights

from equation (11) carry over.

4.3 Individual-level effects

Incumbent workers in exposed occupations experience, on average, wage losses, contrasting

sharply with positive occupation-level effects. To show this, we classify individuals by their origin

occupation before the shock and track their earnings over time. Figure 11 plots average wage

effects for all incumbent workers by their origin occupation against occupational exposure. The

figure reveals that whereas occupation-level wages rise with exposure (Figure 9), incumbent

wages fall with exposure.

This contrast arises because of shifts in occupational worker composition. To see this, observe

that incumbent wage effects can be decomposed as follows:∑
𝑜′′∈𝒪

𝜆′
𝑜′′(𝑠 |𝑜)E[𝑤′

𝑜′′ | �̂� = 𝑜] − E[𝑤𝑜 | �̂� = 𝑜]

=E[𝑤′
𝑜 | �̂� = 𝑜] − E[𝑤𝑜 | �̂� = 𝑜]︸                            ︷︷                            ︸

Δ𝑤𝑜 of incumbents

+
∑
𝑜′′∈𝒪

𝜆′
𝑜′′(𝑠 |𝑜)E[𝑤′

𝑜′′ − 𝑤′
𝑜 | �̂� = 𝑜]︸                                  ︷︷                                  ︸

Reallocation of incumbents

. (14)
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Figure 11: LLM automation – individual-level wage effects for incumbents
Notes. Each dot is an occupation. The vertical axis measures the wage change for initial incumbents of each
occupation before versus after the shock. The horizontal axis measures shock exposure 𝐴𝑜,𝜏. Dot sizes correspond
to pre-shock employment shares. The dotted line is the line of best fit.

where 𝜆𝑜′′(𝑠 |𝑜) denotes the post-automation employment share of occupation 𝑜′′ for workers

initially in 𝑜. The first term can be decomposed according to equation (11) into productivity

and displacement, task-shift, and selection effects. Since equation (14) describes incumbent

wage effects, the "re-sorting" term from equation (11) becomes a term describing incumbent

reallocation across occupations. The contrast between occupational averages and the experience

of individual incumbents thus arises from two sources: first, wage changes at the occupational

level are partly driven by non-incumbents; second, incumbents themselves may move to other

jobs with wages that differ from those in their origin occupation. The decomposition in Figure

11 indicates that incumbents in exposed occupations do worse than their occupational average

suggests. Thus, their reallocation to new occupations does not successfully insure them against

wage losses.

The importance of reallocation motivates us to distinguish between those incumbents who

decide to stay in their job and those who move into other occupations — a distinction we show is

associated with large differences in outcomes. Figure 12 splits the population of incumbents into

these two groups. The figure reveals substantial heterogeneity within occupational incumbents:

stayers do much better than leavers. Figure 13 explains why, highlighting divergent patterns of

skill specialization. The figure plots relative specialization, defined as 𝑠𝑜,𝜏★ − 1
𝑛skill

∑
𝜏∈𝒯𝑙 𝑠𝑜,𝜏, for

incumbents in low- and high-exposure occupations and, within the latter group, incumbent

stayers and incumbent switchers. This contrast shows that selection plays a major role in gener-

ating differences between stayers and switchers: Switchers are highly specialized in automated

tasks, whereas stayers have specialization patterns similar to the general population.
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(b) Incumbent leavers

Figure 12: LLM automation – stayers versus leavers

Notes. Each dot is an occupation. The vertical axis of panel (a) measures the wage change for initial incumbents of
each occupation before versus after the shock, including only those who stay in their occupation after the shock.
The vertical axis panel (a) measures the wage change for initial incumbents of each occupation before versus after
the shock, including only those who leave their occupation after the shock. of The horizontal axis of both panels
measures shock exposure 𝐴𝑜,𝜏. Dot sizes correspond to pre-shock employment shares. The dashed line is the line of
best fit.

The degree of dispersion in wage effects among incumbents workers can be traced back to

the properties of the skill distribution. Focusing on origin-occupation wages allows the following

characterization:

Var(Δ𝑤𝑖 ,𝑜 | �̂� = 𝑜) = (𝐴′
𝑜 − 𝐴𝑜)Σ𝑠 |𝑜(𝐴′

𝑜 − 𝐴𝑜)⊺

=(𝐴′
𝑜 − 𝐴𝑜)

©­­­­­­­­«
Σ−1
𝑠 + 𝜈−2

©­«
∑
𝑜′

ℎ𝑜′(𝑠 |𝑜)𝐴⊺𝑜′𝐴𝑜′ −
(∑

𝑜′
ℎ𝑜′(𝑠 |𝑜)𝐴⊺𝑜′

) (∑
𝑜′

ℎ𝑜′(𝑠 |𝑜)𝐴⊺𝑜′

)⊺ª®¬︸                                                                     ︷︷                                                                     ︸
Task intensity dispersion across occupations

ª®®®®®®®®¬

−1

(𝐴′
𝑜 − 𝐴𝑜)⊺ .

This shows that the automation of more dispersed skills tends to lead to more such heterogeneity

among incumbents, especially when occupations do not differ much in their exposure and, thus,

initial sorting is less pronounced.

To appreciate who the winners and losers are following LLM-driven automation, consider

a few examples. Workers whose skills are concentrated in information-processing tasks lose,

exiting incumbent jobs that no longer reward their comparative advantage. In contrast, many

other workers, especially in highly exposed office and administrative roles, stay and gain as

their work content shifts. This includes, for instance, workers who stay in occupations such
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Figure 13: LLM automation – specialization in automated task by worker groups

Notes. Each box plot shows the distribution of 𝑠𝑖 ,𝜏★ − 1
𝑛skill

∑
𝜏∈𝒯𝑙 𝑠𝑖 ,𝜏 where 𝜏★ corresponds to the “Processing and

Analyzing Records” task. “Low exposure” (“high exposure”) refers to those workers who are in the bottom (top) 10%
by exposure, as measured by 𝐴𝑜,𝜏★ of their occupation.

as “Financial Clerks,” which place large weights on customer-facing and coordination tasks.

Similarly, lawyers who remain in their occupation and experience wage gains are typically those

whose skills concentrate in communication ("Communicating and Educating") and negotiation

("Negotiating and Coordinating Contracts") rather than document processing and analysis.

Incumbent stayers who benefit from task upgrading are not the only winners. As the large

re-sorting effect suggests, many workers realize wage gains because automating a task removes

entry barriers into occupations they would otherwise qualify for. Figure 14 illustrates this point

by comparing wage effects of workers who switch into each occupation against occupational

exposure. In-switchers into the most exposed occupations benefit the most. This reflects that

these occupations undergo substantial changes in task content and thus attract workers whose

skills fit better with the new profile of the transformed occupation.37

Together, these findings paint a picture of diverging fortunes among individuals in exposed

occupations. On the one hand, automation creates losers: Those particularly skilled in the

automated task who selected into the most exposed occupations precisely because of this

specialization. These workers tend to leave after the shock but struggle to find alternative

employment at or above their previous wage level. On the other hand, automation also creates

winners: workers who selected exposed occupations for reasons other than their skill at the

37Going beyond the specific automation scenario we consider here, an evocative but speculative example of this
effect may be the rise of “vibe coding,” which may allow individuals who previously would never have worked as
software engineers due to a lack of coding skills to enter the profession, as LLM code generation shifts the job toward
higher-level tasks like creativity as well as project planning and quality control."
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Figure 14: LLM automation – in-switcher wage effects

Notes. Each dot is an occupation. For each occupation, the vertical axis measures the wage change of workers who
are not incumbents of that occupation but select that occupation after the shock. The horizontal axis measures
shock exposure 𝐴𝑜,𝜏. Dot sizes correspond to pre-shock employment shares. The dotted line is the line of best fit.

automated task. These workers benefit from task upgrading, typically stay after automation,

and realize wage gains.38 A final group of winners are those who initially select less exposed

occupations but who benefit from the shift in task content and after the shock are able to gainfully

move into the most affected occupations and utilize their comparative advantages.

4.4 Discussion

We close by discussing the appropriate interpretation of our quantitative results and potential

extensions. As job transformation effects are typically abstracted from in quantitative automation

analyses, we made three assumptions to transparently identify these effects. First, we deliberately

formulated our model in partial equilibrium. This approach demonstrates that a distinct set

of distributional effects arises even when occupational prices are fixed. Introducing general

equilibrium effects could dampen or amplify their magnitude.

Second, the model features no exogenous switching costs or frictions. This assumption

traces any non-random job mobility to skill heterogeneity, but results in limited occupational

persistence which may translate into overstated wage gains accruing to in-switchers. In addition,

to facilitate estimation and analytical characterization, we assumed skills to be time-invariant.

As mentioned previously, this means our results are best interpreted as applying to a horizon

of three to five years following the shock. Appendix C.2.3 sketches an extension of the model

38These model-based findings echo the empirical finding in Dauth et al. (2021) that workers who stayed in their
firms after the advent of industrial robots tended to experience wage gains and shifted their work to more productive
tasks, whereas those who left tended to lose.
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allowing for a simple form of learning in the form of returns to occupational experience. We

show this extension allows the model to generate greater occupational persistence.

Third, we assume no heterogeneity along observable dimensions such as age or gender to

isolate the effects of skill heterogeneity. It would be valuable for future work to explore how job

transformation effects vary with demographic characteristics.

5 Conclusion

If the historical record—and anecdotal evidence about work reorganization at firms adopting

gen-AI at large scale—offers any guidance, job task transformation will play a first-order role

in shaping AI’s labor market consequences. We develop a framework to analyze these effects,

offering both conceptual insights and methodological tools to quantify them. In ongoing work,

we are assessing the distributional effects of different automation shocks to assess whether AI,

like previous automation shocks (Acemoglu and Restrepo, 2022), will exacerbate wage inequality

or, as has been conjectured, might AI in fact dampen it.39

Our findings challenge the common practice of equating task- or occupation-level automa-

tion exposure with negative wage effects. This interpretation of exposure is misleading. Concep-

tually, job transformation effects create heterogeneous effects at the individual level – workers

exposed to the same shock in the same occupation may fare very differently depending on their

relative specialization.40 Quantitatively, our findings underscore that occupation-level averages

are especially misleading for AI-induced task automation, because AI automates tasks with

larger skill dispersion than in past episodes, prompting larger labor market reallocation flows.

Incumbents in the same occupation include winners, who stay and move to higher-productivity

tasks, and losers, who are pushed out into lower-paying jobs. In brief, exposure measures pro-

vide valuable insights into which tasks specific technologies affect, but deriving implications for

earnings requires a structural model that carefully maps exposure into wages.

Our framework offers three attractive properties. First, because it links directly to task

exposure measures, including forward-looking ones, it can analyze labor market consequences

without waiting for backward-looking exposure data, which is especially useful for policy. Second,

our counterfactual analyses allow for arbitrarily large shocks with potentially non-linear effects.

Third, data requirements are limited: worker-level panel data are widely available, and we offer a

flexible methodology to measure occupational task weights. Thus, the framework can readily be

used to extend the quantitative analysis of job transformation effects to more countries.

39See, for instance, David Autor’s in https://www.noemamag.com/how-ai-could-help-rebuild-the-middle-class.
40In addition, greater exposure can be positive or negative depending on the relative magnitude of displacement

and productivity effects. In our model, positive productivity effects also accrue only to exposed occupations.

39

https://www.noemamag.com/how-ai-could-help-rebuild-the-middle-class/


References

Acemoglu, D. and Autor, D. (2011). Skills, Tasks and Technologies: Implications for Employment
and Earnings. In Handbook of Labor Economics, volume 4, pages 1043–1171. Elsevier.

Acemoglu, D. and Restrepo, P. (2018a). Artificial Intelligence, Automation and Work.

Acemoglu, D. and Restrepo, P. (2018b). The Race between Man and Machine: Implications of
Technology for Growth, Factor Shares, and Employment. American Economic Review, 108(6),
1488–1542.

Acemoglu, D. and Restrepo, P. (2022). Tasks, Automation, and the Rise in U.S. Wage Inequality.
Econometrica, 90(5), 1973–2016.

Acemoglu, D., Kong, F., and Restrepo, P. (2025). Tasks At Work: Comparative Advantage, Technol-
ogy and Labor Demand. mimeo.

Aghion, P., Jones, B. F., and Jones, C. I. (2017). Artificial Intelligence and Economic Growth.

Althoff, L. and Reichardt, H. (2025). AI and Comparative Advantage. mimeo.

Atalay, E., Phongthiengtham, P., Sotelo, S., and Tannenbaum, D. (2020). The Evolution of Work in
the United States. American Economic Journal: Applied Economics, 12(2), 1–34.

Athey, S., Brunborg, H., Du, T., Kanodia, A., and Vafa, K. (2024). LABOR-LLM: Language-Based
Occupational Representations with Large Language Models.

Autor, D. and Thompson, N. (2025). Expertise.

Autor, D., Chin, C., Salomons, A., and Seegmiller, B. (2024). New Frontiers: The Origins and
Content of New Work, 1940–2018. The Quarterly Journal of Economics, 139(3), 1399–1465.

Autor, D. H. (2015). Why Are There Still So Many Jobs? The History and Future of Workplace
Automation. Journal of Economic Perspectives, 29(3), 3–30.

Autor, D. H. and Dorn, D. (2013). The Growth of Low-Skill Service Jobs and the Polarization of
the US Labor Market. American Economic Review, 103(5), 1553–1597.

Autor, D. H. and Handel, M. J. (2013). Putting Tasks to the Test: Human Capital, Job Tasks, and
Wages. Journal of Labor Economics, 31(2), S59–S96.

Autor, D. H., Levy, F., and Murnane, R. J. (2003). The Skill Content of Recent Technological
Change: An Empirical Exploration. The Quarterly Journal of Economics, 118(4), 1279–1333.

Baley, I., Figueiredo, A., and Ulbricht, R. (2022). Mismatch Cycles. Journal of Political Economy,
130(11), 2943–2984.

Bartel, A., Ichniowski, C., and Shaw, K. (2007). How Does Information Technology Affect Produc-
tivity? Plant-Level Comparisons of Product Innovation, Process Improvement, and Worker
Skills. The Quarterly Journal of Economics, 122(4), 1721–1758.

40



Bessen, J. (2012). More Machines, Better Machines... or Better Workers? The Journal of Economic
History, 72(1), 44–74.

Bick, A., Blandin, A., and Deming, D. J. (2024). The Rapid Adoption of Generative AI.

Bocquet, L. (2022). The Network Origin of Slow Labor Reallocation. Working Papers, (halshs-
03703862).

Bonney, K., Breaux, C., Buffington, C., Dinlersoz, E., Foster, L., Goldschlag, N., Haltiwanger,
J., Kroff, Z., and Savage, K. (2024). The impact of AI on the workforce: Tasks versus jobs?
Economics Letters, 244, 111971.

Boustan, L. P., Choi, J., and Clingingsmith, D. (2022). Computerized Machine Tools and the
Transformation of US Manufacturing.

Brynjolfsson, E., Mitchell, T., and Rock, D. (2018). What Can Machines Learn, and What Does It
Mean for Occupations and the Economy? AEA Papers and Proceedings, 108, 43–47.

Brynjolfsson, E., Li, D., and Raymond, L. (2025). Generative AI at Work*. The Quarterly Journal of
Economics, 140(2), 889–942.

Caselli, F. and Manning, A. (2019). Robot Arithmetic: New Technology and Wages. American
Economic Review: Insights, 1(1), 1–12.

Cazzaniga, M. (2024). Gen-AI. IMF Staff Discussion Notes, 2024(001), 1.

Dauth, W., Findeisen, S., Suedekum, J., and Woessner, N. (2021). The Adjustment of Labor
Markets to Robots. Journal of the European Economic Association, 19(6), 3104–3153.

del Rio-Chanona, R. M., Mealy, P., Beguerisse-Díaz, M., Lafond, F., and Farmer, J. D. (2021).
Occupational mobility and automation: A data-driven network model. Journal of The Royal
Society Interface, 18(174), 20200898.

Dell, M. (2024). Deep Learning for Economists.

Dell’Acqua, F., McFowland III, E., Mollick, E. R., Lifshitz-Assaf, H., Kellogg, K., Rajendran, S.,
Krayer, L., Candelon, F., and Lakhani, K. R. (2023). Navigating the Jagged Technological
Frontier: Field Experimental Evidence of the Effects of AI on Knowledge Worker Productivity
and Quality.

Deming, D. J. (2023). Multidimensional Human Capital and the Wage Structure.

Dix-Carneiro, R. (2014). Trade Liberalization and Labor Market Dynamics. Econometrica, 82(3),
825–885.

Eloundou, T., Manning, S., Mishkin, P., and Rock, D. (2023). GPTs are GPTs: An Early Look at the
Labor Market Impact Potential of Large Language Models.

Fan, T. (2025). The Labor Market Incidence of New Technologies.

41



Fan, T. and Restrepo, P. (2025). Partial Automation. mimeo.

Felten, E., Raj, M., and Seamans, R. (2021). Occupational, industry, and geographic exposure to
artificial intelligence: A novel dataset and its potential uses. Strategic Management Journal,
42(12), 2195–2217.

Felten, E. W., Raj, M., and Seamans, R. (2018). A Method to Link Advances in Artificial Intelligence
to Occupational Abilities. AEA Papers and Proceedings, 108, 54–57.

Freund, L. B. (2023). Superstar Teams. JIWP Number: 2235.

Frey, C. B. and Osborne, M. A. (2017). The future of employment: How susceptible are jobs to
computerisation? Technological Forecasting and Social Change, 114, 254–280.

Gathmann, C. and Schönberg, U. (2010). How General Is Human Capital? A Task-Based Approach.
Journal of Labor Economics, 28(1), 1–49.

Geel, R., Mure, J., and Backes-Gellner, U. (2011). Specificity of occupational training and occu-
pational mobility: An empirical study based on Lazear’s skill-weights approach. Education
Economics, 19(5), 519–535.

Grigsby, J. (2023). Skill Heterogeneity and Aggregate Labor Market Dynamics. mimeo.

Guvenen, F., Kuruscu, B., Tanaka, S., and Wiczer, D. (2020). Multidimensional Skill Mismatch.
American Economic Journal: Macroeconomics, 12(1), 210–244.

Hampole, M., Papanikolaou, D., Schmidt, L. D., and Seegmiller, B. (2025). Artificial Intelligence
and the Labor Market.

Hsieh, C.-T., Hurst, E., Jones, C. I., and Klenow, P. J. (2019). The Allocation of Talent and U.S.
Economic Growth. Econometrica, 87(5), 1439–1474.

Humlum, A. (2019). Robot adoption and labor market dynamics. mimeo.

Humlum, A. and Vestergaard, E. (2025a). Large Language Models, Small Labor Market Effects.

Humlum, A. and Vestergaard, E. (2025b). The unequal adoption of ChatGPT exacerbates ex-
isting inequalities among workers. Proceedings of the National Academy of Sciences, 122(1),
e2414972121.

Jones, C. I. (2022). The Past and Future of Economic Growth: A Semi-Endogenous Perspective.
Annual Review of Economics, 14(Volume 14, 2022), 125–152.

Jones, C. I. (2024). The AI Dilemma: Growth versus Existential Risk. American Economic Review:
Insights, 6(4), 575–590.

Kambourov, G. and Manovskii, I. (2008). Rising Occupational and Industry Mobility in the United
States: 1968-97. International Economic Review, 49(1), 41–79.

Kogan, L., Papanikolaou, D., Schmidt, L. D., and Seegmiller, B. (2023). Technology and Labor
Displacement: Evidence from Linking Patents with Worker-Level Data.

42



Korinek, A. (2023). Generative AI for Economic Research: Use Cases and Implications for
Economists. Journal of Economic Literature, 61(4), 1281–1317.

Lashkari, D., Qiu, C., Li, W., and Thompson, N. (2025). AI, Scale, and Skills: A Quantitative
Task-Based Theory of Automation. mimeo.

Lazear, E. P. (2009). Firm-Specific Human Capital: A Skill-Weights Approach. Journal of Political
Economy, 117(5), 914–940.

Lin, J. (2011). Technological Adaption, Cities, and New Work. The Review of Economics and
Statistics, page 21.

Lindenlaub, I. (2017). Sorting Multidimensional Types: Theory and Application. The Review of
Economic Studies, 84(2), 718–789.

Lise, J. and Postel-Vinay, F. (2020). Multidimensional Skills, Sorting, and Human Capital Accu-
mulation. American Economic Review, 110(8), 2328–2376.

McInnes, L., Healy, J., and Astels, S. (2017). Hdbscan: Hierarchical density based clustering.
Journal of Open Source Software, 2(11), 205.

Noy, S. and Zhang, W. (2023). Experimental evidence on the productivity effects of generative
artificial intelligence. Science, 381(6654), 187–192.

Ocampo Díaz, S. (2022). A task-based theory of occupations with multidimensional heterogeneity.
Technical report, mimeo.

Restrepo, P. (2024). Automation: Theory, Evidence, and Outlook. Annual Review of Economics,
16(Volume 16, 2024), 1–25.

Roy, A. D. (1951). Some Thoughts on the Distribution of Earnings. Oxford Economic Papers, 3(2),
135–146.

Sanders, C. (2012). Skill Uncertainty, Skill Accumulation, and Occupational Choice. 2012 Meeting
Papers, (633).

Spitz-Oener, A. (2006). Technical Change, Job Tasks, and Rising Educational Demands: Looking
outside the Wage Structure. Journal of Labor Economics, 24(2), 235–270.

Susskind, D. (2020). A World Without Work: Technology, Automation, and How We Should
Respond. Metropolitan Books, New York, N.Y.

Traiberman, S. (2019). Occupations and Import Competition: Evidence from Denmark. American
Economic Review, 109(12), 4260–4301.

Webb, M. (2019). The impact of artificial intelligence on the labor market. Available at SSRN
3482150.

Woessmann, L. (2024). Skills and Earnings: A Multidimensional Perspective on Human Capital.

43



Online Appendix

This appendix contains supplemental material. Any references to sections, equations, figures,

or tables that are not preceded by a capital letter refer to the main article.

A Theory appendix

A.1 Endogenizing (𝒯𝑙 ,𝒯𝑚) & the automation threshold �̄�𝜏★

Section 2.1 treats the assignment of production tasks to labor and machines, (𝒯𝑙 ,𝒯𝑚), as exoge-

nous. We now discuss a set of additional assumptions that allow us to endogenize these sets as

firms’ choices. This allows us to determine, for any task 𝜏★ an “automation threshold” �̄�𝜏★ that

triggers the optimal automation of this task. In what follows, we spell out these assumptions.

Entrepreneurs. There is a large mass of entrepreneurs. In every period, every worker randomly

matches with 𝑁 ≥ 2 entrepreneurs. Before the occupation and skill are revealed to the en-

trepreneur, the entrepreneur makes an automation decision. That is, they decide the set of

tasks that are produced with human labor, 𝒯𝑙 , and the set of tasks done by machines, 𝒯𝑚 . After

automation decisions are taken, the occupation 𝑜 and the worker’s characteristics (𝑠𝑖 ,· , 𝜀𝑖 ,𝑡) are

revealed. Wages are then set via Bertrand competition. Lastly, the winning entrepreneur forms a

match with the worker and optimally allocates the worker’s time to human tasks and machine

capital to machine tasks.

Automation choice. Given some vector {𝑧𝜏}𝜏∈𝒯 , we define an optimal automation choice as

task sets (𝒯𝑙 ,𝒯𝑚) such that no entrepreneur finds it optimal to deviate from this task assignment.

Note that the wage paid to a given worker is independent of the automation choice from the

perspective of an individual firm considering a deviation. Thus, for any task 𝜏, the condition that

no firm finds it optimal to deviate from the assignment (𝒯𝑙 ,𝒯𝑚) can be written as∫ (
max
𝑚′

𝑦′(𝑚′) − exp(𝑤(𝑠, 𝑜, 𝜀)) − 𝑟𝑚′
)
𝑑𝐹(𝑠 |𝑜)𝑑𝐺(𝜀)𝑑Λ(𝑜)

≤
∫ (

max
𝑚

𝑦(𝑚) − exp(𝑤(𝑠, 𝑜, 𝜀)) − 𝑟𝑚

)
𝑑𝐹(𝑠 |𝑜)𝑑𝐺(𝜀)𝑑Λ(𝑜) (A.1)

where 𝑦′ denotes the production function under a given alternative choice of task sets (𝒯 ′
𝑙
,𝒯 ′

𝑚),
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and Λ, 𝐺, and 𝐹 denote the distributions of occupational choices, idiosyncratic shocks 𝜀 (which

are independent of occupational choices), and skills 𝑠 conditional on occupational choices,

respectively. The task assignment (𝒯𝑙 ,𝒯𝑚) is thus optimal if and only if, for any alternative task

assignments (𝒯 ′
𝑙
,𝒯 ′

𝑚), equation (A.1) is satisfied.

Using the expectations operator in place of integrals and substituting in optimality conditions,

we can also write equation (A.1) as

E(𝑠 |𝑜),𝜀,𝑜

exp
©­­«𝜇′

𝑜 +
∑
𝜏∈𝒯 ′

𝑙

𝛼𝑜,𝜏∑
𝜏∈𝒯 ′

𝑙
𝛼𝑜,𝜏

𝑠𝑖 ,𝜏 + 𝜀𝑖 ,𝑡
ª®®¬


≤ E(𝑠 |𝑜),𝜀,𝑜
exp ©­«𝜇𝑜 +

∑
𝜏∈𝒯𝑙

𝛼𝑜,𝜏∑
𝜏∈𝒯𝑙 𝛼𝑜,𝜏

𝑠𝑖 ,𝜏 + 𝜀𝑖 ,𝑡
ª®¬
 . (A.2)

This establishes that the optimal automation threshold is the one that would leave average wages

constant if occupational choices were held constant.

It can be shown that it is always possible to find values of {𝑧𝜏}𝜏∈𝒯 that justify a given initial

task assignment (𝒯𝑙 ,𝒯𝑚) as optimal. For each task 𝜏, we define the automation threshold �̄�𝜏 as

the point at which Equation (A.2) holds with equality. That is, holding occupational choices

constant, the average wage in the economy stays constant whether or not task 𝜏 is automated. It

can be verified that, given an initially optimal assignment, there is such a threshold value �̄�𝜏 and

it is finite for any task.

Equilibrium with endogenous automation. An equilibrium with endogenous automation is

defined as a tuple of automation choices (𝒯𝑙 ,𝒯𝑚) and a joint distribution Γ of occupation choices,

log wages 𝑤, log skills 𝑠 and idiosyncratic productivity shocks 𝜀·, such that: (i) equation (A.1)

holds for any alternative choice of task sets (𝒯 ′
𝑙
,𝒯 ′

𝑚); (ii) equation (6) holds at any point in

the distribution (that is, firms make zero profits); (iii) the marginal distribution of occupations

conditional on wages follows equation (8) (that is, workers optimize); and (iv) the unconditional

marginal distributions of skills 𝑠 and occupational shocks 𝜀 follow 𝒩(𝑠,Σ𝑠) and 𝒩(0, 𝜍2𝐼), re-

spectively.

For our quantitative exercises, we assume that the productivity of any automated task 𝜏★ equals

�̄�𝜏★.
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A.2 Deriving the Laplace approximation of the skill posterior

In order to obtain the expressions presented in the main text, it is necessary to compute the

posterior skill distribution of workers who choose occupation 𝑜 in a given period. Because the

exact distribution is not tractable, we rely on Laplace approximations. Laplace approximations

provide a normal approximation of the true posterior. To apply this method, we write down the

exact un-normalized posterior log density of workers in occupation 𝑜:

𝜙𝑜(𝑠) = −1

2
(𝑠 − 𝑠)′Σ−1

𝑠 (𝑠 − 𝑠) + 𝜈−1𝜇𝑜 + 𝜈−1𝐴𝑜 · 𝑠 − log

(∑
𝑜′

exp(𝜈−1𝜇𝑜′ + 𝜈−1𝐴𝑜′ · 𝑠)
)
.

The Laplace approximation uses the posterior mode as the mean of a multivariate normal and

the score of the posterior likelihood as its co-variance matrix. Thus, we need to find the first and

second derivative of the un-normalized posterior. Defining the skill-conditional employment

share as ℎ𝑜(𝑠) = exp(𝜈−1𝜇𝑜′+𝜈−1𝐴𝑜′ ·𝑠)∑
𝑜′′ exp(𝜈−1𝜇𝑜′′+𝜈−1𝐴𝑜′′ ·𝑠)

, we can write:

∇𝜙𝑜(𝑠) = −Σ−1
𝑠 (𝑠 − 𝑠) + 𝜈−1𝐴⊺𝑜 − 𝜈−1

∑
𝑜′

ℎ𝑜′(𝑠)𝐴⊺𝑜′

∇2𝜙𝑜(𝑠) = −Σ−1
𝑠 − 𝜈−2

∑
𝑜′

ℎ𝑜′(𝑠)𝐴⊺𝑜′𝐴𝑜′ + 𝜈−2

(∑
𝑜′

ℎ𝑜′(𝑠)𝐴⊺𝑜′

) (∑
𝑜′

ℎ𝑜′(𝑠)𝐴⊺𝑜′

)⊺
The approximate posterior mean sets the first derivative to zero:

𝑠 |𝑜 = 𝑠 + 𝜈−1Σ

relative task intensity of occupation 𝑜︷                      ︸︸                      ︷(
𝐴
⊺
𝑜 −

∑
𝑜′

ℎ𝑜′(𝑠 |𝑜)𝐴⊺𝑜′

)
,

which implicitly defines 𝑠 |𝑜 .

The posterior covariance matrix is then

Σ𝑠 |𝑜 = −∇2𝜙𝑜(𝑠 |𝑜)−1 =

©­­­­­­­­«
Σ−1
𝑠 + 𝜈−2

©­«
∑
𝑜′

ℎ𝑜′(𝑠 |𝑜)𝐴⊺𝑜′𝐴𝑜′ −
(∑

𝑜′
ℎ𝑜′(𝑠 |𝑜)𝐴⊺𝑜′

) (∑
𝑜′

ℎ𝑜′(𝑠 |𝑜)𝐴⊺𝑜′

)⊺ª®¬︸                                                                     ︷︷                                                                     ︸
Task intensity dispersion across occupations

ª®®®®®®®®¬

−1

.
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B Empirical appendix

B.1 Clustering of occupation-specific tasks

This section describes in more detail how we construct the task clusters on which our analysis

is based. Our starting point is the list of detailed task statements in the O*NET database. We

retain only the subset of tasks that O*NET classifies as “core” for any given occupation, dropping

“supplemental” tasks that are less relevant and/or important to the occupation.

B.1.1 Extracting skill requirements

For each of the detailed tasks, we extract a core activity and skill requirements using a LLM,

specifically openAI’s GPT-4o model. The system and user prompts are stated below.B.1

Table B.1 provides an illustration of the core activity and required skills this approach extracts

for a set of skills; it also indicates the cluster the cluster will eventually be assigned to.

System Prompt.�
<Role> You are an expert in labor economics, job analysis, and task

classification. </Role>

<Overall goal>

You will be presented with a list of {len(tasks_chunk)}

occupation-specific task statements. The ultimate goal is to group

these and thousands of other tasks into clusters based on the type

of activity and skills utilized, i.e. someone skilled at one task

in a cluster could perform others in that cluster.

Your overall task is to prepare this clustering step by identifying,

for each task statement:

B.1The temperature parameter is set to 0.00001, which directs the model to provide its most confident response,
minimizing variation across runs. Technically, the LLM predicts the next word in a sequence based on the preceding
words and its prior training. Denoting by 𝑞𝑖 the logit for candidate token 𝑖, the softmax function is used to

scale the logits and map them into probabilities: 𝑒𝑞𝑖/𝑇∑size of vocabulary
𝑘=1

𝑒𝑞𝑘 /𝑇
. The parameter 𝑇 is known as temperature. A

higher temperature value “excites” previously low probability candidates, encouraging creativity, whereas a lower
temperature value lowers the smaller outputs relative to the largest outputs. A lower value is thus preferable for
contexts requiring high coherence and accuracy. Note, though, that even 𝑇 = 0 does not result in deterministic
output in practice, likely due to sources of randomness such as the state of the random-number generator. Moreover,
the so-called “reasoning” generation of models does not support a temperature parameter. In practice, we have
verified that the time allocation shares are highly comparable across different runs of the model.
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(i) the fundamental work activity; and (ii) the most essential skills

and abilities (up to 5) required to perform this task effectively.

Key requirements for (i) the fundamental work activity:

- Definition: The fundamental work activity is a concise, abstract

description that encapsulates the core activity involved in the

task statement (what is being done).

- Generalization: The activity label should be broad enough that if

someone can perform one task under this label,

they’d be expected to handle any task requiring that same underlying

competency.

- Terminology: Use concise and standardized, domain-agnostic terms

that capture the core function, phrasing them in clear,

natural-sounding language.

- Self-explanatory: The label must offer a succinct, self-contained

summary that includes essential context for standalone

understanding;

do not merely reduce the statement to a vague abbreviation.

- Predominant activity: When multiple actions are present, select the

one that best represents the overall purpose of the task.

Key requirements for (ii) the skills and abilities:

- Definition: skills refer to developed capacities that facilitate

performance of activities that occur across jobs; abilities refer

to relatively enduring attributes of an individual’s capability for

performing a particular range of different tasks. A "skill" is not

simply a rewording of the task/activity description itself, but

rather answer the question "What underlying capability makes

someone good at this task?"

So for each skill you identify, ask: ’Would this skill enable

performance across MULTIPLE different tasks and contexts?’ If not,

it’s likely not a true underlying skill.

- Task: Identify the essential skills and abilities required to

perform this task effectively and list them in descending order of

importance.

- The number of skills can range from 1 to 5, depending on the
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complexity of the task; for straightforward ones, only include the

core skills (at least 1); avoid padding with peripheral skills.

- The "most important skills" can include both capabilities and, where

critical, knowledge domains, including:

i) Cognitive capabilities

Examples: strategic planning, statistical analysis, diagnostic

reasoning, technical writing

ii) Specialized technical capabilities

Examples: programming, surgical technique, database architecture

iii) Interpersonal capabilities, management, and leadership

Examples: negotiation, leadership, instruction, conflict resolution,

team development, performance evaluation, delegation,

organizational design, change management,

management of financial resources, management of personnel resources

iv) Physical/sensory capabilities

Examples: fine motor control, spatial awareness, physical endurance

v) Specialized expertise areas

Examples: mathematical modeling, designing scientific experiments,

legal precedents, medical protocols

- Each skill in the list must follow this format: "Skill Name (Level)"

- Level must be one of "basic", "intermediate", "advanced", or

"expert" using the following criteria:

basic: requires fundamental knowledge and minimal experience;

intermediate: requires specialized knowledge and moderate

experience; advanced: requires deep expertise and substantial

experience;

expert: requires mastery-level knowledge, typically 8+ years of

focused experience.

- Critial: When identifying skills, pay particular attention to

specialized capabilities that typically command higher wages in the

labor market, such as: Complex analytical or strategic thinking

skills, Specialized technical expertise that requires extensive

training, High-stakes decision-making capabilities, Skills

involving the direction of others’ work or significant resources,

Expertise that is both scarce and in high demand. For high-wage

occupations, ensure you separately list these skills rather than
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using generic descriptors.

</Overall goal>

<Detailed instructions>

Step 1) For each task statement, identify and summarize (i) the

fundamental work activity; and (ii) the most important skills.

Step 2) Return the output (activity; skills) for all

{len(tasks_chunk)} task statements in the JSON format specified.

- List the skills in descending order of importance to the task (most

crucial first).

- Never leave any task blank; if unsure, provide your best guess.

</Detailed instructions>

<Examples>

The following examples illustrate the level of abstraction desired

(for reference only, do not copy these exact labels unless they

truly match the task at hand).

Example work activities: "train and teach others at work", "operate

vehicles", "operate industrial machinery," "provide advice or

consultation," "coordinate the work of subordinates/peers,"

"inspect or repair equipment," etc.

Example task: "Review statistical studies, technological advances, or

regulatory standards and trends to stay abreast of issues in the

field of quality control."

Activity: evaluate complex technical information

Skills: analytical thinking (expert), research (advanced), statistical

analysis (advanced), reading comprehension (advanced)

Example task: "Wash glasses or other serving equipment at bars."

- Activity: cleaning

- Skills: manual dexterity (basic)

Example task: "Analyze financial statements to determine company

valuation"
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Activity: analyze and interpret financial data

Skills: market analysis (expert), numerical reasoning (advanced), data

analysis (intermediate), financial modeling (advanced)

Example task: "Lead strategic planning for a multinational division

with $500M annual revenue"

Activity: direct organizational strategy

Skills: leadership (expert), strategic planning (expert), financial

analysis (advanced), business intelligence (advanced)

Example task: "Train new employees on safety procedures and equipment

operation"

Activity: train and teach colleagues

Skills: verbal communication (intermediate), technical knowledge about

equipment (intermediate), instructional planning (basic)

Example task: "Supervise and coordinate the work plan of customer

service representatives and schedule shifts"

Activity: manage team operations

Skills: operational planning (intermediate), verbal communication

(advanced), people development (advanced)

Example task: "Develop marketing strategy for new product launch"

Activity: create marketing strategies

Skills: strategic thinking (advanced), business knowledge (expert),

creativity (intermediate), analytical reasoning (intermediate),

written communication (advanced)

Example task: "Read operating schedules or instructions or receive

verbal orders to determine amounts to be pumped."

- Activity: follow operational instructions

- Skills: reading comprehension (basic), verbal communication (basic)

</Examples>� �
User Prompt.�
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<List of task statements>

Here is the list of {len(tasks_chunk)} job task statements to analyze,

along with their index numbers:

{task_list}

</List of task statements>� �
Task Activity Skills Cluster
Smooth rough spots on walls
and ceilings, using sandpaper

smooth sur-
faces

manual dexterity (ba-
sic), attention to detail
(basic)

Performing De-
tailed Manual
Tasks

Lubricate moving parts on
gate-crossing mechanisms and
swinging signals

lubricate
moving
parts

manual dexterity (ba-
sic), attention to detail
(basic)

Performing De-
tailed Manual
Tasks

Perform physically demanding
tasks, such as digging trenches
to lay conduit or moving or lift-
ing heavy objects

perform
physical
labor

physical endurance
(advanced), manual
dexterity (intermedi-
ate)

Performing
Physical Labor

Prepare reports of activities,
evaluations, recommendations,
or decisions

prepare
reports

report writing (ad-
vanced), analytical
reasoning (interme-
diate), attention to
detail (intermediate)

Processing
and Analyzing
Records

Confer with officials of pub-
lic health and law enforcement
agencies to coordinate interde-
partmental activities.

coordinate
interde-
partmental
activities

collaboration (ad-
vanced), project man-
agement (advanced),
communication skills
(intermediate)

Coordinating
Project Initia-
tives

Table B.1: Examples: detailed tasks, extracted characteristics, and cluster assignment

Notes. This table lists examples of detailed tasks (first column), that is the input, as well as the extracted core activity
and skill requirements (LLM-generated), and the labeled cluster to which this task is assigned.

B.1.2 Embeddings and clustering

We use Alibaba’s gte-Qwen2-1.5B-instruct model to create word embeddings of dimension

1,536 for the extracted skills for each task statement. To prepare the embeddings data for cluster-

ing, and noting that the HDBSCAN algorithm we are using performs best on data with low to

medium dimensionality, we next perform a two-part dimensionality reduction step. We initially

perform PCA, retaining 267 principal components that explain 95% of the variance in the em-

bedding space. We then perform a subsequent UMAP step, which is useful to preserve both local

and global data structures while shrinking the number of components to a level suited for the
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HDBSCAN algorithm. (We use the following hyperparameters for UMAP: n_components = 40,

option_umap_n_neighbors = 40 and option_umap_min_dist = 0.1.) Finally, we use the HDB-

SCAN algorithms with the following hyperparameters min_cluster_size = 70, min_samples

= 40, cluster_selection_epsilon = 0.05. The distance metric er option_hdbscan_metric is

Euclidean given the preceding UMAP step.

B.1.3 Labeling step & summary output

Finally, we use OpenAI’s o3-mini-high model to create natural-language labels and a summary

description for each of the task clusters. These cluster-level meta data are useful in two ways: in

terms of interpretation, and as inputs to the LLM when constructing the occupation-level time

shares across the task clusters. Practically, for each cluster we randomly select ten representative

tasks and feed the core activity as well as the skill requirements for these tasks to the LLM,

instructing it to generate a cluster label and a brief description, per the following prompts.

Table B.2 details all 38 task clusters, indicating the summary label and description.

System Prompt.�
<Role> You are a world-class expert in labor economics, task

classification and occupational analysis. You use concise and

standardized language that is consistent with established

terminology in skills/occupational databases like O*NET or PIACC.

</Role>

<Overall goal>

The overarching goal is to create accurate and meaningful summary

labels for clusters of job tasks.

Each cluster comprises many tasks, which grouped by the type of

activity (what is being done) and the skills required (capacities

that facilitate performance of activities); i.e., the general rule

is that a person proficient in one task in a given cluster should

also be able to perform others in that cluster.

Given this goal, you will be presented with a list of tasks --

alongside the most essential skills required to perform each --

that exemplify a particular cluster.
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You primary task is to create an accurate and concise summary label

for this cluster of tasks.

Your secondary task is to provide a concise description of this

cluster, with reference to core skill requirements differentiating

this cluster from others.

Requirements for the summary label:

- The label summarizes the common core activities (what is being

done), while remaining specific enough to meaningfully

differentiate this cluster from others.

- The label focuses on the essential underlying activity rather than

the specific domain.

- The label is sufficiently specific to allow differentiating between

occupations that have different skill requirements and wage levels.

- The label is concise (2-5 words), uses natural sounding language

aligned with established task/skill terminology,

and where possible begins with a gerund (verb+ing form).

Requirements for the description:

- The concise description (1 sentence) summarizes the cluster, with

reference to core skill requirements differentiating this cluster

from others.

</Overall goal>

<Detailed instructions>

Step 1: Analyze the {len(tasks_chunk)} tasks by identifying the

fundamental activities involved and core skills utilized across all

them.

Step 2: Create a summary cluster label that satisfies the requirements

outlined above.

Test your label to ensure that it meets each of the X requirements;

revise and iterate until this is the case.

Step 3: Given the label, and considering the skills listed for the

exemplary rasks, provide a concise description.
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</Detailed instructions>

<Examples of cluster labels>

Here are examples of cluster labels to illustrate the desired level of

abstraction. These serve for guidance only, you must create

appropriate task-specific labels.

- Positive example: "Developing and Building Teams" (relevant across

domains, but specific enough to distinguish from other

interpersonal tasks)

- Positive example: "Analyzing quantitative data" (relevant across

different occupations, distinct from qualitative analysis which

would involve different skills)

- Positive example: "Performing gross motor or heavy manual physical

labor" (connotes a broad range of tasks with similar skill

requirements)

- Positive example: "Technical Operation and Maintenance Tasks" (not

domain specific, connotes a skill requirement distinct from

advanced technical analysis)

- Negative example: "Getting Information" (too unspecific)

- Negative example: "Performing Administrative Activities" (too broad,

could involve routine tasks such as processing paperwork or

advanced managerial tasks, i.e. tasks requiring very different

skills)

- Negative example: "Communication" (too unspecific, could comprise

anything from chatting with colleagues to arguing a complex case in

court)

</Examples>� �
User Prompt.�

<List of tasks to analyze>

Here is the list of {len(task_descriptions)} tasks that are

representative of the task cluster under consideration alongside

the most important skills required to perform them:

{task_list}
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</List of tasks to analyze>� �
Cluster label Description
Performing Detailed Manual Tasks This cluster involves executing precise, hands-on operations—ranging from cleaning and lubricating to marking and packaging—that rely on

basic manual dexterity and careful attention to detail.
Performing Precision Finishing Tasks This cluster encompasses tasks that involve fine manual adjustments and finishing operations—such as aligning, smoothing, and testing

components—requiring intermediate manual dexterity and attention to detail.
Preparing and Planning Meals This cluster involves tasks that span cooking, menu planning, and overseeing food safety and service, requiring strong culinary skills, dietary

knowledge, and attention to detail.
Maintaining Records and Inventory This cluster involves routine operational support tasks that require diligent record keeping, inventory management, and clear communication to

sustain documentation, asset tracking, and service functions.
Coordinating Detail-Oriented Opera-
tions

This cluster involves routine tasks such as sorting, record-keeping, material distribution, and facility upkeep that require meticulous attention to
detail and basic to intermediate organizational skills.

Delivering Public Presentations This cluster involves speaking in formal and public settings—ranging from project briefings and lectures to courtroom testimonies—requiring
advanced public speaking, communication, and subject matter expertise.

Documenting Technical Information This cluster focuses on capturing and recording technical details and processes using advanced technical writing, documentation, and attention
to detail.

Performing Clinical Procedures This cluster involves executing patient-focused clinical tasks that combine advanced diagnostic reasoning, technical equipment operation,
interpersonal communication, and therapeutic interventions to assess and treat medical conditions.

Providing Customer Service This cluster involves direct customer interactions that require strong interpersonal, communication, time management, and organizational skills
to assist, guide, and support various client needs in service-oriented settings.

Administering Regulatory Compliance This cluster involves interpreting policies, reviewing and enforcing regulatory standards, and developing procedures, all requiring advanced
regulatory knowledge, analytical reasoning, and communication skills.

Coordinating Emergency Response This cluster involves executing and managing emergency procedures, crisis communication, threat monitoring, and strategic planning, requiring
advanced emergency response and situational awareness skills.

Maintaining and Managing Records This cluster involves systematically updating, retrieving, and organizing diverse records and data through strong attention to detail and organiza-
tional skills.

Reviewing and Editing Information This cluster involves accurately reviewing, editing, and verifying various forms of information—from written materials to operational
data—requiring advanced attention to detail and precision.

Ensuring Regulatory Compliance This cluster involves meticulous inspection, record management, and analytical review to verify adherence to regulatory standards and operational
protocols.

Performing Physical Labor This cluster encompasses physically demanding tasks that require manual dexterity, physical endurance, and fundamental technical and safety
skills across diverse settings including construction, cleaning, material handling, animal care, and exercise instruction.

Creating Technical Visual Representa-
tions

This cluster involves transforming data, technical specifications, and artistic ideas into precise visual media by integrating advanced drafting,
design, and multimedia editing skills.

Designing and Implementing Systems This cluster centers on planning, designing, and integrating technical systems across diverse fields, emphasizing advanced project management,
engineering design, and technical expertise.

Processing and Analyzing Records This cluster involves tasks focused on maintaining, recording, and evaluating data—including financial, production, and medical records—where
strong numerical reasoning, analytical skills, and meticulous attention to detail are essential.

Operating, Calibrating, and Inspecting
Equipment

This task cluster involves technical operations focused on handling electronic recording, imaging, and sound equipment, requiring precise
calibration, systematic inspections, and adept problem-solving skills.

Inspecting and Evaluating Quality This cluster involves detailed inspections and analyses that rely on advanced analytical reasoning and attention to detail to assess product, site,
and process quality, ensuring standards and performance are met.

Performing Skilled Manual Operations This cluster involves executing diverse manual tasks—ranging from assembly, finishing, and equipment maintenance to operation and clean-
ing—that require intermediate to advanced manual dexterity, attention to detail, and technical proficiency.

Negotiating and Coordinating Contracts This cluster involves engaging stakeholders through advanced negotiation and communication skills to secure agreements and manage procure-
ment activities while coordinating legal, regulatory, and project management requirements.

Repairing and Maintaining Equipment This cluster encompasses preventative maintenance, technical repair, and equipment installation tasks that require advanced system knowledge,
manual dexterity, and safety awareness.

Managing Safety Operations This cluster involves overseeing operational activities with a strong emphasis on safety compliance, hazard assessment, and technical oversight
across diverse industrial, emergency, and technical settings.

Monitoring and Inspecting Systems This cluster involves actively operating, adjusting, and inspecting automated processes and equipment by employing advanced technical
troubleshooting, precision measurement, and quality control skills to ensure optimal system performance.

Analyzing and Optimizing Systems This cluster involves applying advanced technical analysis, simulation, and maintenance skills to assess performance, recommend design changes,
and ensure operational integrity across diverse systems.

Analyzing Natural Phenomena This cluster involves applying advanced scientific analysis, technical expertise, and data interpretation to evaluate, classify, and redesign natural
and biological systems across diverse domains.

Instructing and Training This cluster involves delivering instruction, training, and mentorship across diverse subject areas, relying on advanced instructional techniques,
verbal communication, and subject matter expertise.

Mediating and Consulting Clients This cluster involves interpersonal guidance tasks—including counseling, referrals, conflict investigation, and dispute resolution—that require
advanced communication, empathy, and problem-solving skills to address diverse client issues effectively.

Developing and Delivering Instruction This cluster encompasses tasks centered on planning, designing, and conveying educational programs and curricula, leveraging advanced
instructional design, curriculum development, and communication skills across varied content areas.

Communicating and Educating This cluster involves effectively conveying information, instructions, and feedback through verbal channels, integrating clear reporting, problem-
solving, and instructional skills across diverse contexts.

Engaging in Continuous Learning This cluster encompasses tasks that require ongoing research, information synthesis, and professional development to remain current with
industry trends, technology advancements, and scientific progress.

Collaborating Across Functions This cluster comprises tasks requiring effective teamwork, communication, and coordination across diverse professional areas to address
problems, manage operations, and support technical and client-oriented activities.

Coordinating Project Initiatives This cluster involves planning, overseeing, and collaborating on diverse project tasks, leveraging advanced project management, communication,
and leadership skills.

Coordinating Administrative Tasks This cluster encompasses planning, scheduling, and organizing a range of administrative operations, requiring strong organizational, communica-
tion, and project management skills.

Coordinating Strategic Initiatives This cluster involves planning, organizing, and supervising diverse activities—ranging from educational events to disaster recovery and recruit-
ment—requiring advanced leadership, strategic planning, and team management skills.

Producing Technical Documentation This cluster involves drafting and compiling technical reports, proposals, and documentation through advanced technical writing, analytical
reasoning, and data presentation skills, with elements of programming and research support.

Performing Strategic Analysis This cluster involves advanced quantitative research, financial and cost analyses, and strategic planning to assess deviations, forecast outcomes,
and drive management recommendations.

Table B.2: Task cluster labels and descriptions
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B.2 LLM-generated time diaries

This section describes how, given the task clusters, we construct the occupational task weight

matrix. In addition, we detail validation exercises.

B.2.1 Methodology

To generate the time diaries we use the latest version of GPT-o3-mini-high for this step. We loop

over each occupation using the following prompts. These are designed to break the complex task

into clear sequential steps, draw on high-quality inputs, and convert the qualitative assessment

into a numerical output.

System Prompt.�
You are an expert in occupational classification (the system being

used is {occ_system} at the {occ_level}-digit level) and analyzing

occupational time allocation.

You combine precision in classification with deep knowledge of how

different occupational groups allocate their time across tasks.

You focus on accurate, structured data output, and your time share

predictions MUST sum to exactly 1.0. You are precise and

conscientious.� �
User Prompt.�
<Objective and context>

We want to accurately estimate what percentage of their work time

workers in a specific occupation group spend on various tasks.

The occupation group is {occ_title}, as classified following the

occupational classification system {classification_description}.

The reference period to consider is the {option_timeperiod}.

</Objective and context>

<List of tasks>

The tasks to consider are as follows:

{task_list}

</List of tasks>
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<Instructions>

Follow these steps to generate accurate time allocation estimates:

1. Analyze core functions, activities and responsibilities of

{occ_title}

2. For each task listed above:

- Review the task carefully

- Assess the importance and frequency of this task for {occ_title}

in the {option_timeperiod}, drawing on high-quality evidence,

expert knowledge and statistical data.

3. Having done this for all tasks, convert assessments to time

allocation shares:

For each task:

- Convert assessment to percentage of work time

- Translate to decimal (e.g., 25% 0.2500)

- Document: task_name: 0.XXXX

- Add to running_sum

4. Verification (required):

Calculate total_sum to 4 decimals

If total_sum != 1.0000:

- Calculate scaling = 1.0000/total_sum

- Multiply EACH share by scaling

- Recalculate sum

STOP: Submit shares only if sum = 1.0000

Critical Requirements:

- Use 4 decimal precision throughout

- Show calculations

- Final shares MUST sum to 1.0000

- No rounding of intermediate values

- Calculate time shares for all {task_count} tasks.

</Instructions>� �
In rare instances, the LLM does not generate time shares that sum to 1, despite the above

instructions. This is reminiscent of human responses in time diary surveys. We therefore

programmatically normalize the LLM-predicted shares, just as we do using the conventional,
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human survey responses discussed below. Over the course of the project we moved from openAI

4o to o3-mini-high, which dramatically reduced the need for this ex-post normalization of time

shares.

B.2.2 Validation

This section describes four complementary approaches that collectively demonstrate the robust-

ness of the LLM-based measurement of the occupational task weights.

Comparison to aggregated O*NET task ratings. O*NET 29.2 provides for each O*NET-SOC-2019

8-digit occupation a list of detailed task statements categorical ratings on a scale from 1-5 that

indicate the importance of that task to the occupation. In this section we use these ratings and

the mapping from tasks to our clusters to construct an alternative 𝐴 matrix and compare it to

our baseline.

In a first step, we collapse occupations to the SOC-2019 minor group level and create

occupation-cluster weights that correspond to the shares of the detailed tasks associated to

that occupation group that belong to a given cluster, weighted by importance ratings. That

is, the weight occupation 𝑜 puts on cluster 𝑐 is greater if a large fraction of the detailed tasks

associated to 𝑜 are linked to 𝑐 or if those tasks have especially high importance weights. B.2 Next,

the SOC-2019 occupations are cross-walked to the SOC-2000 classification used in our analysis

using the official crosswalks available from https://www.onetcenter.org/taxonomy.html.

Comparing the occupational task weights thus obtained to our baseline, we find that they

exhibit a strong, positive correlation (0.45). The task ratings yield an 𝐴 matrix with a higher

degree of concentration, in that the average occupation-level Herfindahl Index is 0.18 compared

to 0.11 in our baseline. We prefer our baseline approach, because it relies on cardinal time shares

that identify the entries of the 𝐴 matrix in a model-consistent way, but in principle the 𝐴 matrix

based on O*NET task ratings is a viable alternative.

BIBB time diaries. We use a supplemental survey conducted for the 2012 Employment Survey

carried out by the German Federal Institute for Vocational Training (Bundesinstitut fuer Berufs-

bildung, BIBB) and the and the German Federal Institute for Occupational Safety and Health

(BAuA). This survey asks a subset of surveyed workers to report their allocation of time to a

pre-specified list of tasks such as “teaching” and “cleaning” on a given day.B.3

We proceed in three steps. First, we construct occupation-task level time allocation shares

from the BIBB. We consider the sample of individuals in West Germany aged 15-65 who have

B.2In addition to “importance,” O*NET also provides scales for “relevance” and “frequency,” which in principle
could be used in the weighting also.

B.3The full list of 17 tasks is as follows: ’investigating’, ’organizing’, ’researching’, ’programming’, ’teaching’, ’con-
sulting’, ’buying’, ’promoting’, ’repairing’, ’accommodating’, ’caring’, ’cleaning’, ’protecting’, ’measuring’, ’operating’,
’manufacturing’, ’storing’
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(a) Occupation-level correlations (b) Task-level correlations

Figure B.1: Comparison of LLM-generated task weights & BIBB survey

Notes. The left panel plots the distribution of occupation-level correlations between the LLM-predicted task weights
and those constructed from the BIBB. The right panel shows the task-level correlations across occupations instead.

completed their training and who report a valid occupation ISCO-08 2-digit occupation. For

each individual, we normalize the time shares to sum to one. Then we average time shares across

occupations and retain those occupations comprising least ten surveyed workers. Second, we

re-run the same LLM-based process as in the main analysis, but now requiring responses for the

same set of tasks considered in the BIBB and looping over ISCO-08 2-digit occupations. Third,

we compare the BIBB-based and LLM-based responses.

Overall, the two different approaches yield highly comparable results. Figure B.1a shows

correlations at the level of occupations; the mean correlation is 0.54, the standard deviation is

0.31. The lowest correlations are reported for “Customer Service Clerks,” “General and Keyboard

Clerks” and “Numerical and Material Recording Clerks.” A major source of discrepancy is

that for these occupations, survey respondents in the BIBB put substantial weight on the task

“programming” (which in the original German language context could also be interpreted as

“using a computer”). With further clarification on the interpretation of tasks, we expect that the

LLM and BIBB would yield results that are more comparable still. Figure B.1b reports task-level

correlations of weights across occupations. The tasks with the lowest overlap are “promoting”

and “cleaning,” while the alignment is greatest for “teaching” and “caring.”

Comparison to O*NET importance weights for GWAs. Next, we compare LLM-generated

time allocation shares with O*NET occupation-level importance weights for Generalized Work

Activities (GWAs). We use the GWAs from ONET 5.0, as this database aligns with the SOC-2000

classification used in our main empirical analysis. We construct relative importance weights for

each GWA by occupation and aggregate to the minor-group level. We then generate LLM-based

time allocation shares for identical GWAs across the same occupational categories and compare
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the resulting two 𝐴 matrices.

Figure B.2 displays the distribution of occupation-level correlations between LLM-generated

time shares and O*NET importance weights. The distribution is markedly right-skewed, with

a central tendency around 0.6-0.7, indicating substantial alignment between our LLM-based

approach and established occupational measurements. Figure B.3 presents task-specific cor-

relations across occupations, grouped by correlation strength. Tasks involving cognitive and

managerial functions show the strongest correspondence (correlations >0.75), while more spe-

cialized technical tasks exhibit moderate alignment. Even the lowest-correlating tasks maintain

coefficients above 0.2, suggesting our approach captures meaningful variation across the entire

task spectrum.
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Figure B.2: GWAs: LLM-time shares correlate with O*NET importance weights

LLM consistency in aggregation across occupational hierarchies. Figure ?? demonstrates the

strong consistency of the LLM generated task weights across different levels of occupational

aggregation. We compare weights derived directly from major occupational groups with those

constructed by averaging across their constituent minor occupational categories (using un-

weighted means). The very high correlation coefficient (0.89) confirms that our task allocation

approach maintains consistency regardless of aggregation level.

B.3 Occupational labor shares

To construct occupation-level labor shares – i.e., compensation over value-added – we take the

following approach, where industries are indexed by 𝑗 and occupations by 𝑜:

(i) Construct weights 𝑠𝑜 𝑗 corresponding to the share of industry-𝑗 payments to labor going to

occupation 𝑜:

𝑠𝑜 𝑗 =
(wage payments to 𝑜 in 𝑗)∑
𝑜 (wage payments to 𝑜 in 𝑗)

(B.1)
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Figure B.3: Correlation across occupations by task
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Figure B.4: Comparison of task weights at different occupational levels of aggregation
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(ii) Assume that value-added in 𝑗 due to 𝑜 is proportional to 𝑠𝑜 𝑗 :

VA𝑜 𝑗 = 𝑠𝑜 𝑗 · VA𝑗 (B.2)

(iii) Compute

LS𝑜 =

∑
𝑗 wage payments to 𝑜 in 𝑗∑

𝑗 VA𝑜 𝑗
(B.3)

In the empirical implementation, we use the 2002 wave of the BLS Occupational Employment

and Wage Statistics (OEWS) to construct 𝑠𝑜 𝑗 . This wave uses the same SOC-2000 occupational

classification as our (harmonized) NLSY dataset and NAICS-2002 industry codes. Data on 𝑉𝐴 𝑗

come from the BEA-BLS Integrated Industry-level Production Accounts (1987-2020). In addition,

to construct the numerator of equation (B.3) we use the same apportionment method as in

equation (B.2).B.4 Industry-level data are averaged across sample years. We then link the OEWS

data on 𝑠𝑜 𝑗 with the BEA/BLS industry-level data by merging at the 2-digit NAICS level, retaining

only those industries with a 1:1 mapping.B.5

The (unweighted) average labor share across occupations is 0.61, with a minimum of 0.49

(Farming, Fishing, and Forestry Occupations) and a maximum of 0.75 (Legal Occupations).

B.4 Automation exposure measures: Webb (2019)

Figure B.5 shows the average standardized exposure score of each task cluster for the three types

of technology considered by Webb (2019): AI, Robots, and Software.

It can be observed that the task cluster identified as most exposed to AI in Webb (2019) is

“Analyzing Natural Phenomena” which, according to the LLM’s summary description, involves

“applying advanced scientific analysis, technical expertise, and data interpretation to evaluate,

classify, and redesign natural and biological systems across diverse domains.” By contrast,

“Processing and Analyzing Record,” our primary example of a task category exposed to LLMs has

a close to average exposure score.

This difference is indeed to be expected. The technology cluster labeled by Webb (2019) as “AI”

comprises a broader set of tools, including neural networks and deep learning algorithms more

broadly, compared to the study by Eloundou et al. (2023), which explores task-level exposure to

LLMs more specifically. Thus, it is indeed to be expected that different tasks would be exposed

B.4Using the wage bill information from the OEWS instead suffers from the problem that magnitudes of compensa-
tion differ from those in the BEA-BLS accounts; using the latter is, therefore, internally more consistent.

B.5The BEA/BLS data provide a crosswalk from the “production account classes” to NAICS-2007; NAICS-2007 and
NAICS-2002 are identical at the 2-digit level.
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−1 0 1 2 3 4
Exposure score (standardized)

Documenting Technical Information
Delivering Public Presentations

Negotiating and Coordinating Contracts
Coordinating Detail-Oriented Operations

Performing Detailed Manual Tasks
Instructing and Training

Preparing and Planning Meals
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Analyzing Natural Phenomena AI
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Figure B.5: Technology-specific exposure scores at the task level (Webb, 2019)

Notes. This chart shows for each of three technologies the standardized exposure score for our task clusters based
on the results of Webb (2019). In Webb’s approach, AI patents are identified by terms like "neural network,"
"deep learning," or "generative model" in titles or abstracts. Software patents contain terms such as "software" or
"program" while excluding hardware-related terms like "chip" or "circuit." Robot patents are selected through the
inclusion of the term "robot" in titles or abstracts.

to the two technologies, respectively. Our framework suggests that this difference is potentially

important, even if the degree of automation of two distinct tasks, as measured by the decline

in the labor share, for instance, may carry labor market consequences that differ in important

ways depending on the bundles of tasks the exposed tasks form part of and the distribution of

task-specific skills.
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C Quantitative appendix

C.1 Methodology

C.1.1 Stochastic gradient descent

To estimate the model parameters, including the joint distribution of skills, the following stochas-

tic object has to be maximized:

ℒ̂𝑖(𝑤𝑖 ,�̂�𝑖 ,· ,· , �̂�𝑖 ,· |𝜈, 𝜍, 𝑠 ,Σ𝑠) = ©­« 1

𝑛0

∑
𝑗

∏
𝑡

𝑃(�̂�𝑖 ,𝑡 |𝑤 𝑗 ,·,𝑡 , 𝜈)ª®¬ · 𝑓 (𝑤𝑖 ,�̂�𝑖 ,· ,· |𝜍, 𝑠 ,Σ𝑠)

To do this, we can write exploit the fact 𝑠𝑖 |𝑤 𝑗 ,�̂�𝑖 ,· ,· is normal and thus any can be written as

𝑠𝑖 = 𝜇𝑐𝑜𝑛𝑑
𝑠 + 𝐿𝑐𝑜𝑛𝑑

𝑠 · 𝑢

for some easy to compute (𝜇𝑐𝑜𝑛𝑑
𝑠 , 𝐿𝑐𝑜𝑛𝑑

𝑠 ) and 𝑢 ∼ 𝒩(0, 𝐼). 𝑢 is drawn once and then held

constant throughout the maximization procedure, while 𝜇𝑐𝑜𝑛𝑑
𝑠 and 𝐿𝑐𝑜𝑛𝑑

𝑠 depend on model

parameters. We therefore proceed as follows:

(i) For each worker 𝑖, generate 𝑛0 draws of 𝑢 that remain fixed

(ii) Compute 𝑠𝑖 = 𝜇𝑐𝑜𝑛𝑑
𝑠 + 𝐿𝑐𝑜𝑛𝑑

𝑠 · 𝑢

(iii) Compute 𝜀𝑖 ,𝑡 = 𝑤𝑖 ,�̂�𝑖 ,𝑡 ,𝑡 − 𝜇𝑜 − 𝐴𝑜,· · 𝑠𝑖

(iv) Use these draws to obtain a sample 𝑤 𝑗 ,·,· of wages in every occupation-period cell.

(v) Compute ℒ̂𝑖(𝑤𝑖 ,�̂�𝑖 ,· ,· , �̂�𝑖 ,· |𝜈, 𝜍, 𝑠 ,Σ𝑠)

We then employ stochastic gradient descent. That is, starting with some guess, we update our

parameters as follows:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 · ∇
(
−ℒ̂(𝜃𝑡)

)
for some sufficiently small 𝜂 > 0. To further ease the computational load, we evaluate the

likelihood at a subsample 𝐵 only. To do this, we iterate over epochs. In each epoch, we randomly

partition individuals into 𝑛 groups:

{1, 2, . . . , 𝐼} = 𝐵1 ∪ 𝐵2 ∪ . . . ∪ 𝐵𝑛 , 𝐵𝑖 ∩ 𝐵 𝑗 = ∅
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Figure C.1: Correlation matrix 𝐶𝑠

Notes: Heatmap of the correlation matrix 𝐶𝑠 . Each cell corresponds to one entry of the matrix.

and, on each iteration within an epoch, evaluate the likelihood based on batch 𝐵1, . . . , 𝐵𝑛 only.

Using parallelization over individuals and auto-differentiation techniques, this reduces the

computation time of the likelihood maximization procedure substantially and allows us to solve

this problem even when the parameter space is very large.

C.2 Additional results

C.2.1 Additional estimation results

The co-variance matrix of our baseline estimate is plotted in Figure C.1.

C.2.2 Additional simulation results

Sorting. Figure C.2 illustrates sorting on the basis of comparative advantage, using the skill of

“Coordinating Strategic Initiatives” for the occupation of “Top Executives” as an example. Since

the task of “Coordinating Strategic Initiatives” is heavily utilized within this occupation, the

occupation features a worker pool that is on average more skilled in this task.
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Figure C.2: Selection based on comparative advantage: example

Notes. This figure displays the standardized distribution of relative specialization in a focal task 𝜏★ defined as 𝑠𝑖 ,𝜏★ −
1

𝑛skill

∑
𝒯𝑙 𝑠𝑖 ,𝜏, where 𝜏★ is the task “Coordinating Strategic Initiatives,” comparing the unconditional distribution that

the distribution conditional on having selected into the occupation “Top Executives.”

Task shift and selection effects. In the main text, we showed that the dispersion of worker skills

is positively related to the magnitude of the re-sorting effect. In this appendix, we conduct a

comparative analysis of different task automation shocks to understand the determinants of task

shift and selection effects. One way to assess the role of these effects with rising exposure is to

regress their effect size onto the exposure 𝐴𝑜,𝜏 of every occupation 𝑜 ∈ 𝒪.C.1. Figure C.3 plots the

slope of the corresponding regression line against simple measures that plausibly determine the

size - the skill mean 𝑠 for the task-shift effect and the skill dispersion 𝑆𝑠 for the selection effect.

Panel (a) shows that the task shift effect increases faster in occupational exposure when 𝑠 is

smaller. This is not surprising: Automating low productivity skills tends to lead to more powerful

task upgrading effects. The figure also indicates that the task upgrading effect for tasks associated

with the rise of AI (“Processing and Analyzing Records”, “Reviewing and Editing Information”)

tend to be larger than those for skills associated with robots (“Performing Detailed Manual Tasks”,

“Performing Physical Labor”). Panel (b) shows that selection effects typically put more downward

pressure on wages when the associated skill is more dispersed. Again, this is not too surprising,

as more dispersed skills tend to be more dominant in determining sorting patterns and thereby

exacerbate the correlation between occupational exposure and specialization in the automated

task. What is more surprising is that the most affected tasks in the case of AI appear to be outliers

from this pattern. Selection effects may therefore play a more important role in alternative

scenarios of AI automation.

Alternative shock. Figure C.4 reproduces Figure 12 from the main text for an alternative shock to

C.1We weight these regressions by pre-shock occupational employment shares
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Figure C.3: Decomposition of task-shifting & selection effects: comparison across tasks

Notes. In both panels, each dot corresponds to a task. In the left panel, the horizontal axis displays the (standardized)
estimated skill mean of the task, 𝑠𝜏. The vertical axis displays the coefficient of a regression that regresses the
magnitude of the task-shift effect from full automation for a given occupation on its exposure 𝐴𝑜,𝜏, weighted by
pre-shock employment. In the right panel, the horizontal axis displays the estimated skill dispersion of the task,
𝑆𝑠,𝜏. The vertical axis displays the coefficient of a regression that regresses the magnitude of the selection effect
from full automation for a given occupation on its exposure 𝐴𝑜,𝜏, weighted by pre-shock employment.

the second most affected task, “Maintaining and Managing Records” – also a form of information-

processing. The results remain qualitatively unchanged.

C.2.3 Robustness: returns to occupational experience

As mentioned in the main text, a limitation of our baseline model is that it under-predicts

workers’ tendency to stay in the same occupation (cf. Figure 6). One likely reason is that

the model abstracts from occupational tenure effects, which are important in the data (e.g.,

Traiberman, 2019, Figure 3). In this section, we we show that our model can be extended to

feature a type of learning in the form of returns to occupational experience. Reassuringly, we

found that all results are qualitatively — and indeed in most cases quantitatively — very similar

to the baseline.

This version of the model is identical to our baseline except that a worker’s productivity

depends on their tenure in occupation 𝑜. Here, we consider the simplest such case, where

productivity is greater whenever a worker has at least one year of experience in the occupation.

We thus assume that workers who in period 𝑡 choose occupation 𝑜 ∈ 𝒪 have a productivity that

depends on whether they worked in occupation 𝑜 in period 𝑡 − 1: If they did not work in 𝑜 in

𝑡 − 1, their productivity is 1. If they did work in 𝑜 in 𝑡 − 1, their productivity is exp(Δ) with Δ > 0
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Figure C.4: Stayers versus leavers

Notes. See notes for Figure 12.

The worker’s decision problem can be characterized as follows: Let

𝑤𝑒
𝑖,𝑜(0) = 𝜇𝑜 + 𝐴 · 𝑠𝑖

𝑤𝑒
𝑖,𝑜(1) = 𝜇𝑜 + Δ + 𝐴 · 𝑠𝑖

be the expected wages of a worker with skills 𝑠𝑖 . Then the worker’s (expected) value function

satisfies:

𝑉𝑜(0) = 𝑤𝑒
𝑖,𝑜(0) + 𝛽𝜈 log

exp
(
𝑉𝑜(1)
𝜈

)
+

∑
𝑜′≠𝑜

exp

(
𝑉𝑜′(0)
𝜈

)
𝑉𝑜(1) = 𝑤𝑒

𝑖,𝑜(1) + 𝛽𝜈 log

exp
(
𝑉𝑜(1)
𝜈

)
+

∑
𝑜′≠𝑜

exp

(
𝑉𝑜′(0)
𝜈

)
and thus that𝑉𝑜(1) = 𝑉𝑜(0) +Δ. This can be calculated via value function iteration and is simple

enough to be handled by our estimation algorithm.

We do not report the full set of results for this specification but highlight that, as illustrated in

Figure C.5, this version of the model yields substantially greater levels of occupational persis-

tence.
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Figure C.5: Occupational transition patterns in the model with learning

Notes. See notes for Figure 6. For illustration, the model parameters are kept fixed at the baseline but we set Δ = 0.5,
yielding an average staying probability of 0.67, close to the empirical value of 0.63.
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