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Abstract

Recent studies attribute the rise in wage inequality primarily to widening pay disparities between

rather than within firms. I develop a novel theory to quantitatively explain this fact. The theory

has three core features: production takes place in teams; workers are heterogeneous in talent and

are specialized in specific tasks; and labor markets are frictional. Specialization endogenously

generates coworker complementarity: talented workers gain more from more talented colleagues.

This creates an incentive for assortative matching, fostering dispersion in average wages across

firms, but search frictions prevent perfect sorting in equilibrium. Using administrative panel

data for Germany, I measure complementarities, validate key mechanisms, and estimate the

model. I argue that specialization has intensified since the mid-1980s, and show that coworker

complementarities and talent sorting have strengthened concurrently, aligned with the theory’s

predictions. According to model exercises, this explains ∼40% of the observed increase in the

between-firm share of wage inequality, and it contributed to elevated firm-level productivity

dispersion. Rising complementarities also worsened aggregate productivity losses from coworker

mismatch, but endogenously increased sorting partly mitigated this effect.
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1 Introduction

Firms are increasingly viewed as playing a central role in the evolution of wage inequality. An

extensive empirical literature documents that, across many advanced economies, a prominent

feature of wage dispersion and its rise since the 1980s is the large and increased share attributable

to between-firm differences in pay. A key reason is that gaps across firms in the quality of

their workforces have widened. While these facts figure prominently in academic and policy

discussions, their implications for our understanding of the rise in inequality and potential

policy responses depend on the underlying structural drivers. Those remain obscure.1

In this paper, I propose a novel framework that rationalizes these empirical patterns of

firm-level inequality, linking them to the nature of production. The framework centers on

a conception of the firm as a “team assembly technology.” Firms hire multiple workers of

heterogeneous talent and production features coworker complementarity: Workers’ realized

productivity is interdependent such that the marginal productivity of one employee’s talent

increases with that of colleagues. Labor market sorting is interpreted as describing how workers

of varying talent are matched together in the workplace. I argue that shifts in the nature of work

have reinforced coworker complementarity, making it increasingly advantageous for talented

workers to collaborate among themselves, and thereby leading to heightened labor market

sorting and larger gaps between firms in productivity and average pay.

The analysis proceeds in three main steps. First, I build and characterize an equilibrium

model of production with teams of heterogeneous workers that are hired in a frictional labor

market. This model provides an analytical, task-based microfoundation for coworker comple-

mentarities and describes their influence on the distribution of talent and wages within and

between firms. Second, I take the model to the data. I develop a method to estimate the strength

of coworker complementarity and implement it using German matched employer-employee

data. This novel micro evidence facilitates estimating the model. Third, I combine theory and

data to quantitatively explain the evolution of firm-level inequality. Empirically, complementar-

ity has doubled in magnitude since the mid-1980s, mirroring a shift in the nature of production

away from routine tasks toward more complex requirements. Through the lens of the model, this

rise in complementarity accounts for 40% of the empirically observed growth in the between-

firm share of wage inequality. Overall, the paper thus contributes theory, tools, and evidence

that jointly facilitate a parsimonious, quantitative interpretation of changes in the nature of work

and in the distribution of talent and wages within and across firms.

Elaborating on the first step, the theory has three core features. First, workers are heteroge-

1Key references on firm-level inequality include Card et al. (2013) for Germany and Song et al. (2019) for the U.S.,
while Criscuolo et al. (2021) provide a cross-country analysis and discuss policy implications.
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neous in overall talent, modeled in terms of absolute advantage, and their skills are specialized. I

take “specialization” to describe the degree to which an individual’s productivity varies across

different tasks. Specialization contrasts with a scenario where a talented employee excels – and

is thus more productive than a less talented peer – equally across all production tasks. Second, in

the spirit of Garicano (2000), production takes place in teams. Firms are ex-ante identical and co-

ordinate the division of labor: each hires multiple workers, then assigns them tasks to maximize

output. Third, labor services are traded in markets with frictions, specifically a random-search

setting à la Herkenhoff et al. (2022), with wages determined through bargaining. Team assembly

consequently involves a trade-off between the productivity gain from a well-matched team and

search costs. These elements jointly give rise to a model that can speak to dispersion in worker

talent and pay within and across firms.

In equilibrium, the workforce of some firms is composed of highly talented workers, while

other firms mostly employ less productive ones. Specialization endogenously generates coworker

complementarity in talent. As a worker’s efficiency varies across tasks, their realized productivity

is lowered if, due to less capable colleagues, they have to dedicate more time to tasks in which

they are relatively inefficient. The loss in productivity is greater in absolute magnitude for workers

with higher potential output. Thus the production function is supermodular in talent (i.e., it

features complementarity). If labor market frictions are absent, any degree of complementarity

leads to pure positive assortative matching in equilibrium. As the best candidates for hire

are more productive in firms employing other talented employees, those firms can always

outbid competitors for their services. In the presence of search costs, however, a range of

matches is accepted. The strength of coworker complementarity influences how wide this

range is, thus shaping equilibrium matching outcomes. If specialization is strong, the resulting

complementarities make it relatively more profitable for agents to expend time on search, and

talent becomes more concentrated in select workplaces.

In this environment, exogenous technological shifts that reinforce specialization foster pos-

itive assortative matching and raise between-firm inequality at the macro level. I argue that

this theoretical mechanism is empirically relevant. In some domains, specialization is widely

understood to have intensified. In science, for instance, the increasing cost of reaching the

frontier – the “burden of knowledge” (Jones, 2009) – necessitates increasingly narrow individual

expertise, with team production gaining in prevalence concomitantly. Considering the economy

more broadly, employees are performing fewer routine tasks, where everyone is similarly produc-

tive, instead confronting more complex, cognitive non-routine problems that require specific

skills.2 I interpret these empirical trends as indicating that deeper specialization is one of several

2The literature section below discusses studies of the changes in task requirements. Jones (2009), Bloom et al.
(2014), and Neffke (2019) highlight shifts in knowledge and communication costs.

2



dimensions along which the nature of production has changed, alongside, say, skill bias. The

model reveals that intensified specialization strengthens coworker complementarities, thereby

widening gaps in workforce quality and pay between firms.

I analytically characterize the two key relationships underpinning this mechanism: deeper

specialization leads to stronger coworker complementarity; and complementarity fosters between-

firm inequality. The firm’s organizational problem is to optimally assign tasks when each em-

ployee has limited time and varies in productivity across tasks. The probabilistic, extreme-value

formulation of productivity heterogeneity popular in trade and spatial economics can be lever-

aged to keep this high-dimensional problem tractable. Specifically, I derive a team production

function which is aggregative, in that the vector of employees’ talent types is a sufficient statistic

for team output, and which has a constant-elasticity-of-substitution (CES) structure. The degree

of substitutability endogenously varies with a parameter that determines the strength of special-

ization, i.e., how dispersed any worker’s efficiencies are across tasks. The stronger specialization

is, the more advantageous is the division of labor compared to each employee performing all

tasks. Crucially, coworker complementarity is also stronger, so output is more sensitive to the

talent of the least capable team member(s). Furthermore, in a stylized version of the matching

model, I derive in closed-form that stronger complementarity leads to more positive assortative

matching into teams and, hence, increased between-firm wage inequality in equilibrium.

Next, I bring the model to the data. To this end, I develop an empirical strategy to estimate

coworker complementarities. Since production complementarities cannot be measured directly

in general data environments, I use the theoretical model to derive an identification result

which reveals an empirically observable moment that is highly informative about production

complementarity: the cross-partial derivative of the empirical, non-parametric wage function

with respect to own type and coworker type. I implement this measurement strategy using

administrative matched employer-employee data for Germany, interpreting each establishment

as one team.3 Coworker complementarity is robustly found to be positive. In the cross-section,

complementarities are stronger in occupations involving more complex tasks, which in turn is

associated with more pronounced coworker sorting – consistent with the theoretical predictions.4

Empirical estimates of the strength of coworker complementarity allow calibrating the model

without relying on between- or within-firm dispersion in talent or wages as targets. I fit the

model to a parsimonious set of moments characterizing the German economy for 2010-2017.

The micro estimates of the wage cross-partial derivative serve a key source of empirical discipline.

The model reproduces key untargeted moments, notably coworker sorting patterns and the

empirical decomposition of wage inequality into a between- and a within-employer component.

3I use “firm” and “establishment” interchangeably; in the data analysis the latter is the observed production unit.
4For the cross-sectional analyses and robustness checks, I also consider comprehensive micro data for Portugal.
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Finally, I use micro data and model to provide a quantitative assessment of historical trends.

Longitudinal surveys indicate that the complexity of tasks performed at work has risen since

the mid-1980s. Over the same time, coworker wage complementarity has more than doubled

and coworker talent sorting has intensified, consistent with the predictions of the theory. To

evaluate the macro-distributional implications of this rise, I calibrate the model for 1985-1992.

Comparing between 1985-1992 and 2010-2017, the model predicts a 16 percentage point increase

in the between-establishment share of the variance of log wages. Counterfactual exercises imply

that the rise in coworker complementarity estimated in the micro data can account for 40% of

the empirically observed change in the between-share.5 Beyond wages, complementarities also

contributed to a rise in firm-level productivity dispersion.

Lastly, I discuss the model’s implications for aggregate labor productivity. The microfounded

production function reveals that while greater specialization yields direct productivity gains, this

comes with a catch: as complementarities are amplified, productivity becomes more sensitive to

how positively assortative coworkers are matched. The potential output costs of talent misallo-

cation due to search frictions are consequently greater. For the period 1985-1992, equilibrium

per-capita output is estimated to be 1.8% below potential (i.e., output under perfectly assortative

matching). The gap rises to 2.2% in the 2010s. The increase in mismatch costs is limited, despite

the doubling of complementarities, precisely because coworker sorting has increased. Without

the rise in sorting, the gap between efficient and realized labor productivity would have been

more than twice as large in 2010-2017.

LITERATURE. This paper relates to five strands of literature. First, I connect two lines of

research on wage inequality. One line describes how trends in the nature of work – notably, a shift

from routine to non-routine tasks – affect skill prices.6 The other, more recent line of research

employs descriptive and reduced-form approaches to document firms’ significant and growing

role in explaining wage inequality. Notable examples such as Card et al. (2013) and Song et al.

(2019) find that changes in workforce composition play a central role.7 However, models that

explain these empirical patterns are lacking. Such a model needs to incorporate both within-

and between-firm worker heterogeneity and be capable of explaining changes over time. Yet,

most influential theories of trends in inequality center on the aggregate production function and

wage distribution (e.g., Krusell et al., 2000). Meanwhile, canonical models of labor market sorting

lack a well-defined notion of within-firm worker heterogeneity (e.g., Shimer and Smith, 2000).

5Beyond complementarities, changes can be attributed to mechanical effects of skill-biased technological change
and to declining search frictions. I also conduct robustness check that consider the influence of occupational
composition effects (e.g., due to outsourcing) and on-the-job search.

6See, e.g., Autor et al. (2003), Spitz-Oener (2006), Deming (2017), Atalay et al. (2020), Autor et al. (2022).
7See, among others, Kremer and Maskin (1996), Barth et al. (2016), Helpman et al. (2017), Haltiwanger and

Spletzer (2020), Criscuolo et al. (2021), Håkanson et al. (2021), Sorkin and Wallskog (2021), Wilmers and Aeppli
(2021), Kleinman (2022) and Engbom et al. (2023).
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This paper presents a model that integrates a team production function with heterogeneous

workers and labor market search. By accounting for endogenous coworker complementarities,

the models reveals that the transformation of work helps to rationalize the growing importance

of between-firm inequality, thereby bridging both literatures.

Second, I add to the literature on firm organization, notably studies that examine how the

within-firm division of labor shapes productivity and inequality.8 My model is especially linked

to and builds on the theory of knowledge-based hierarchies of Garicano (2000) and Garicano and

Rossi-Hansberg (2006), as the organization of production and the distribution of wages is jointly

determined by the equilibrium assignment of heterogeneous individuals to firms and to tasks

within firms. While hierarchical models have a “vertical” focus – complementarities between

managers and their endogenous number of supervisees – mine considers complementarities

more generally and lends itself to quantification, at the cost of treating the span of control as

exogenous. I also build on Kremer (1993) who argues that what I call coworker complementarity

is stronger in more “complex” environments, though an empirical or quantitative analysis is

missing.9 All of these papers assume frictionless labor markets. I contribute to this literature

by providing a micro-foundation for coworker complementarities, showing that their macro

implications crucially depend on the interaction with labor market frictions, taking the theory to

micro data, and performing a quantitative assessment.

Third, the paper relates to theoretical models of task assignment, including Costinot and

Vogel (2010), Acemoglu and Restrepo (2018), Martinez (2021) and Ocampo (2022). I contribute

to this literature by showing how Eaton and Kortum’s (2002) probabilistic formulation of tech-

nological heterogeneity in terms of extreme-value distributions facilitates aggregation across

a continuum of tasks in the context of a discrete number of producers characterized by mul-

tidimensional skill heterogeneity.10 The resulting CES production function makes it possible

to connect what are typically qualitative task assignment theories with quantitatively oriented

macro models that rely on a tractable production function.

Fourth, I relate to the literature that develops structural models of worker and firm dynamics

in labor markets, most notably those that examine matching between heterogeneous agents

under random search.11 Models in the latter strand of research typically share the Beckerian

8See, for instance, Lucas (1978), Sattinger (1993), and Gabaix and Landier (2008); and, for more recent contri-
butions, Porzio (2017), Adhvaryu et al. (2020), Caliendo et al. (2020), Tian (2021), Adenbaum (2022), Bloesch et al.
(2022), Kohlhepp (2022), Minni (2022), Kuhn et al. (2023) and Bassi et al. (2023).

9In Kremer’s (1993) model, the strength of complementarities is increasing in the number of tasks (“complexity”),
which by construction equals team size. The model developed here severs the mechanical link between team size
and complementarities by endogenizing the number of tasks assigned to each team member, and disentangles the
effects of complementarities and increasing returns to firm-level labor quality. Also see Saint-Paul (2001).

10Deming’s (2017) study of social skills provides inspiration for an analogy to trade, but the setup does not yield an
aggregative team production function, nor does it focus on coworker complementarities or equilibrium matching.

11Regarding the matching literature specifically, see for instance, Hagedorn et al. (2017), Lopes de Melo (2018),
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premise that labor market sorting is shaped by complementarities across productivity types.

I examine complementarities across coworkers’ attributes in multi-worker firms, instead of

the typical setup of one-worker-one-firm matches. In that respect, the matching block of my

model largely follows Herkenhoff et al. (2022), which is the first model where frictional sorting

is between workers within teams rather than between workers and firms.12 While Herkenhoff

et al. (2022) primarily focus on coworker learning, they also conjecture that stronger comple-

mentarities can explain increased labor market segregation. I offer an explanation for such a

change in production technology by deriving a task-based microfoundation for complemen-

tarity, documenting empirical support for this explanation, and quantitatively evaluating it.13

More generally, the literature usually treats complementarity as exogenous. This limits our

understanding of the economic forces that drive changes in sorting. This paper instead endoge-

nizes (coworker) complementarities by modelling the organizational task assignment problem,

which ties complementarities to specialization. I also develop an approach to directly measure

complementarities in widely available micro data and provide evidence that sorting is tied to

complementarities, which supports a key premise of this literature.

Fifth, the paper relates to a small but growing literature that highlights how team production

shapes macroeconomic outcomes. In addition to studies of innovation (Akcigit et al., 2018;

Ahmadpoor and Jones, 2019; Pearce, 2022), recent papers on coworker learning underscore the

dynamic importance of coworker sorting for human capital growth, as stronger sorting deprives

less productive workers of opportunities to learn from more knowledgeable team members

(Jarosch et al., 2021; Herkenhoff et al., 2022; Hong, 2022). While my model omits such spillovers,

these studies underline the importance of understanding the determinants of coworker sorting.

I contribute a quantitative framework that explicates how specialization among team members

shapes sorting and allocative efficiency.

OUTLINE. Section 2 lays out motivating empirical evidence. Section 3 presents and character-

izes the theoretical model. Section 4 maps the model to micro data, develops a theory-informed

strategy to measure complementarities, calibrates and validates the model. Section 5 uses the

structural model, along with time series evidence on complementarities, to study the evolution

of wage inequality, sorting, and coworker mismatch. Section 6 offers a concluding discussion.

and Lindenlaub and Postel-Vinay (2023). For recent advances in the structural modeling of firms in labor markets
more generally, see also Bilal and Lhuillier (2021); Bilal et al. (2022); Elsby and Gottfries (2022); Engbom and Moser
(2022); Gouin-Bonenfant (2022); Haanwinckel (2023).

12Boerma et al. (2021) resolve the major challenge of solving a (frictionless) model of sorting by heterogeneous
firms with teams of heterogeneous workers when technology is submodular, instead of supermodular as in this
paper. Their quantitative analysis does not match the empirically observed rise in the between-firm share of wage
inequality, which is a key contribution of the present paper.

13Chade and Eeckhout (2020) provide an alternative theory of assortative but stochastic matching with teams. A
version of their model in which knowledge spillovers in downstream markets affect firms’ hiring choices likewise
predicts, qualitatively, that increased complementarities tilt wage inequality toward the between-firm component.
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2 Descriptive evidence

This section describes key trends in the data that inform the quantitative model. Section 2.1

introduces the underlying data, which are also used in the remainder of the paper. Section 2.2

revisits evidence on the evolution of wage inequality in Germany and documents patterns of

positively assortative matching between workers. Section 2.3 examines changes in the nature of

tasks which speak to an increasing specialization of worker skills.

2.1 Data

The primary dataset is the Sample of Integrated Employer-Employee Data (SIEED) from the

German Institute for Employment Research (IAB). The SIEED covers the entire workforce of a

1.5% sample of all establishments in Germany and tracks the complete employment biographies

of these individuals, including when they are not employed at the sampled establishments.

Establishments are distinguished by ownership as well as industry and location. For ease of

language, in the remainder of the text I use the terms “establishment” and “firm” interchangeably.

For most analyses, I rely on an annual panel, created from the original spell-level data. When

parallel spells exist, the highest-paying job is retained as the main episode. Wages, measured

at the daily level, are deflated to 2015 euros, and top-coded observations are imputed using

standard practices. The sample is restricted in several steps. I initially select full-time employed

individuals at establishments in West Germany, aged 20-60, with real daily wages of at least

10 Euros. Then, observations in establishment-year cells containing fewer than ten worker

observations are dropped. Subsequently, I restrict attention to the largest connected set, as we

will rely on worker mobility to identify time-invariant worker types, as well as dropping singletons.

The final sample, spanning 1985-2017, comprises 17,126,027 observations for 1,982,239 unique

individuals. More details, including summary statistics, are in Appendix B.1.1.

As a baseline, I use wages that are residualized with respect to age and job tenure as well as

years. The goal is to maintain consistency across empirical and theoretical analyses, anticipat-

ing that the structural model will not incorporate life-cycle, on-the-job learning, or aggregate

productivity growth. To calculate residualized wages, I regress the (raw) log real daily wage of

worker 8 in year C, F̃8C , on a person fixed effect and a time-varying characteristics index, -8C ,

which includes year dummies, a cubic in age and a quadratic in job tenure.14 As an input into the

analysis, I then use lnF8C = F̃8C − -′8C �̂, which includes the individual fixed effects. The variance

of log residualized wages accounts for around 81% of the variance in raw log wages.

To examine shift in the nature of work over time, I supplement the SIEED with micro data

14As the regression includes person and year fixed effects, I exclude the linear age term in light of the age-year-
cohort identification problem. As in Card et al. (2013), I normalize age around 40.
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from the BIBB/IAB and BIBB/BAuA Employment Surveys. These large-scale, representative

surveys have been conducted roughly every seven years since 1979. Each survey asks employees

to indicate which tasks they perform on the job. Occupation codes are harmonized across waves.

Hence, the survey is ideal for monitoring how the task content of production evolves within

occupations, an aspect which has been shown to be at least as significant as shifts in occupational

employment shares (Spitz-Oener, 2006; Atalay et al., 2020). Furthermore, the occupation-level

data from these survey can be linked to the SIEED. Appendix D contains further details.

2.2 The evolution of labor market inequality

THE ROLE OF FIRMS IN SHAPING WAGE INEQUALITY. I begin the descriptive analysis by revisiting

– through the lens of the SIEED – the evidence that widening differences between firms are an

important feature of the rise in wage inequality.

Figure 1a indicates that wage inequality in Germany has risen substantially since the mid-

1980s, and that this increase is primarily accounted for by widening pay gaps between firms.

The figure presents the yearly total variance of log wages (solid line) and decomposes it into

between-employer (dashed line) and within-employer (dotted line) component. By the law

of total variance, the total variance equals the sum of the two components. It rose from an

average of 0.143 in the interval 1985-1992 to 0.241 during 2010-2017. Of this 0.097 point increase,

around 90% are accounted for by the between-employer component. Put differently, the share of

the total log wage variance due to between-employer differences rose increased from 33.6% in

1985-1992 to 56.8% during 2010-2017. This trend is consistent with what has been documented

by Card et al. (2013) and Song et al. (2019), among others.

These trends are robust to a battery of robustness checks. Appendix B.3 confirms that

between-firm differences play an increasingly important role in accounting for overall person-

level wage inequality when considering different measures of wages, within-occupation, and

within-industry. Moreover, the trend is also evident in countries other than Germany, albeit the

rise in the between-employer share is indeed particularly marked there. To summarize:

Fact 1 (Wage Inequality). The overall increase in German wage inequality between 1985 and 2017

is primarily accounted for by widening pay gaps between firms rather than within them.

COWORKER SORTING. That wage inequality stems from both differences in pay among

employees within firms and between firms underscores that each firm is essentially a collection

of workers. Following this line of thought, I next examine to what extent coworkers’ pay-relevant

characteristics are systematically related.

This analysis necessitates measuring worker types. I construct my baseline measure using a

8



1985 1990 1995 2000 2005 2010 2015

Year

0

0.05

0.1

0.15

0.2

0.25

0.3

V
ar

ia
nc

e 
of

 lo
g 

w
ag

es

" between-share:0.233

Total
Between-establishment
Within-establishment

(a) Wage inequality

0 10 20 30 40 50 60 70 80 90 100

Worker type percentile

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
til

e 
av

g.
 c

ow
or

ke
r 

ty
pe

1990
2017
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Figure 1: The evolution of wage inequality and coworker sorting

Notes. The left panel shows the variance of log (residual) wages, decomposed into between- and within-employer
components. The latter is given by the person-weighted variance of firm-level average log wages. The change in
the between-share indicated compares the average over 1985-1992 and 2010-2017. The right panel plots, for any
percentile of the worker type distribution the percentile rank of the average coworker type. Workers are ranked
economy-wide. For visual clarity, types are grouped into 50 cells, then coworker quality is computed for each cell.

standard approach in the empirical literature by estimating worker fixed effects, denoted 8 for

worker 8, from two-way fixed effect wage regression in the spirit of Abowd et al. (1999, AKM). In a

pre-estimation step I cluster firms based on their empirical wage distribution using a k-means

algorithm, following Bonhomme et al. (2019), to mitigate a well-known incidental parameter

bias problem (Andrews et al., 2008). Letting 1(�(8 , C) = :) denote dummies indicating which

cluster : firm the employer of 8 in period C, 9(8 , C) has been assigned to, I estimate

ln(F̃8C) = 8 +
 ∑
:=1

#:1(9(8 , C) = :) + -′8C� + &8C , (1)

where -′
8C

contains the same time-varying observables as in the previous section, and &8C is a

residual.15 I estimate equation (1) separately for five periods that split the sample into intervals

of roughly equal duration. Details are in Appendix B.2.1 The average coworker fixed effect for

individual 8 in period C is then defined as −8C = 1
|(−8C |

∑
:∈(−8C : , where (−8C = {: : 9(:C) =

9(8C), : ≠ 8} is the set of coworkers with the same employer as 8 in year C.

Table 1 reports a measure of coworker sorting for each of the five sample periods. This

measure is the correlation between a worker’s own type and that of her coworkers (Lopes de

Melo, 2018). Column 1 reveals that coworker sorting is both positive and increasing. It has risen

15Appendix B.4.7 reports results when time-varying observables are not controlled for.
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Coworker sorting

Period Within-economy type ranking Within-occupation type ranking

1985-1992 0.427 0.423
1993-1997 0.458 0.443
1998-2003 0.495 0.452
2004-2009 0.547 0.470
2010-2017 0.617 0.519

Table 1: Coworker sorting over time

Notes. This table indicates the correlation coefficient between a worker’s estimated type and that of their average
coworker, computed separately for five sample periods.

from an average of 0.427 during 1985-1992 to 0.617 during 2010-2017 – a 44.5% increase.16

The second column of Table 1 examines to what extent this increase in coworker sorting

reflects greater segregation along occupational lines, whereby higher-pay and lower-pay occu-

pations cluster in distinct firms. Specifically, it displays the correlation between worker and

coworker types when the type measures are standardized within (2-digit) occupation-years. The

increase is smaller (+0.096 instead of +0.19) but still very notable – a 22.7% rise – indicating that

top-performing workers within each occupation are increasingly likely to work together.

Figure 1b offers a more disaggregated perspective on coworker sorting through a binscatter

plot. The plot shows average coworker type for each worker type, comparing data from 2017

(orange line) and 1990 (blue line). The graph reveals an upward-tilted slope in 2017, indicating

great labor market polarization: high types increasingly work with other high types, while the

opposite is true for low types, with less change in the middle. The figure also confirms that the

rise correlation is not due to isolated, idiosyncratic changes in the type distribution.

A limitation of the preceding analysis is that worker types are inferred from wage data. While

the resulting worker type measure is cardinal, granular and comparable across countries, it risks

conflating shifts in skill quantities and prices. Two points alleviate this concern. First, a similar

rise in labor market sorting is observed when using years of schooling as an alternative proxy for

productive capacity (see Appendix B.3.5). Second, other research using non-wage skill measures,

16Appendix B.3.4 supplements the analyses here with a series of AKM-based wage variance decompositions. This
popular diagnostic tool ties wage dispersion to the variances and covariance of worker and firm FEs. Consistent
with the existing literature, I find an important role for changes in workforce composition across firms in explaining
the rise in between-firm inequality. Increased variation in the firm-level average worker FEs and the covariance of
firm and worker FEs jointly explain over fourth fifths of the increase in the between-employer component, with
the remainder accounted for by a rise in the variance of firm FE. In the absence of a structural model that ties
the statistical terms to primitives, caution needs to be exercised, though, when interpreting these wage variance
decompositions in terms of labels such as “firm-specific pay premia” or “worker-firm sorting”. The interpretation of
firm fixed effects is particularly difficult (e.g., Eeckhout and Kircher, 2011; Lochner and Schulz, 2022).
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such as Håkanson et al.’s (2021) analysis of Swedish administrative data that includes test scores

from military enlistment tests, support the finding of increased coworker sorting. In summary:

Fact 2 (Coworker sorting). Highly productive workers increasingly cluster in the same firms,

segregated from other, less productive workers, who cluster in different firms.

2.3 Worker specialization and the evolving task content of production

This paper argues that to explain the labor market patterns collected in Facts 1 and 2, we should

consider that production typically involves teams of workers with specialized skills. By “team

production” I refer to the ubiquitous economic phenomenon that production involves multiple

workers whose productivity may be interdependent.17 I take “specialization” to describe the de-

gree to which an individual’s productivity varies across different tasks required for production.18

This section provides evidence in support of the idea that – alongside growing between-firm

inequality in workforce talent and wages – the nature of work being performed inside of firms

has likewise meaningfully changed; specifically, the importance of specialization has grown

over the past four decades. Despite its prominent place in economic theory, directly measuring

specialization is challenging. I therefore draw on multiple sources of evidence: micro data on

tasks, both by itself and linked to the SIEED; case studies; and the broader literature.

Data on the task content of production can be used to construct proxy measures of special-

ization that cover the economy as a whole and offer longitudinal insights. My primary proxy

is the share of tasks that are abstract and non-routine, henceforth termed “task complexity.”

Complex tasks – like teaching, investigating or organizing – demand cognitive skills and cannot

be executed by following pre-specified rules (cf. Autor et al., 2003). Workers are likely to perform

similarly across different routine tasks, since almost definitionally no specific skills are required

(Martellini and Menzio, 2021, p. 340). In contrast, non-routine tasks offer greater scope for

productivity variation across tasks.19 Thus, task complexity can be viewed as a proxy for the

extensive margin of specialization.

To chart the temporal evolution of task complexity in Germany, I use the BIBB micro data

introduced in section 2.1. I calculate the share of complex tasks in each respondent’s activities,

then average across four time points and different educational or occupational groups, following

Spitz-Oener (2006). Appendix D provides details. To corroborate the reliability of task complexity

17This definition is similar to that offered in the seminal work of Alchian and Demsetz (1972, Section II). While
richer conceptualizations of team production as involving collaborative problem solving or task-oriented, flexible
team rotation exist – and are intuitively related – they are not essential to this paper’s argument.

18As used here, the concept should thus be understood in terms of the task-specificity of human capital, as
opposed to time allocation – what tasks you concentrate on doing. In the theoretical model, those two distinct
notions will be tied together endogenously.

19Consistent with this idea, Caplin et al. (2022) find the time needed to reach maximal productivity to be highest
for management roles or knowledge-intensive occupations, which are generally associated with complex tasks.
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Figure 2: Rising economy-wide task complexity & deepening medical specialization

Notes. Panel 2a is based on the BIBB data and depicts the average share of complex, or abstract non-routine, tasks
in individual workers’ set of activities for four points in time and distinguishing between three education groups.
Panel 2b is sourced from the American Board of Medical Specialities. For each year, it shows the number of unique
speciality or sub-speciality certificates that have been approved and issued at least once by that year and which are
are still being issued.

as a proxy for specialization, I compare it, in the cross-section, to an alternative measure that

gauges worker specialization more directly but which is available only for recent years. Specifi-

cally, Bloesch et al. (2022) use U.S. online vacancy data to construct an occupation-level measure

of within-firm task differentiation across positions. The two proxies yield very similar rankings of

occupations: managerial and professional jobs score the highest, followed by technicians, while

routine service and manual jobs exhibit the lowest levels of task complexity and within-firm

differentiation. 20 This suggests that both proxies capture similar latent features.

Figure 2a depicts an upward trend in the share of complex tasks reported, increasing from

0.252 in 1986 to 0.647 in 2018. This increase was especially pronounced between the 1990s and

early 2000s, and manifested across among all education groups. Moreover, it primarily resulted

from within-occupation changes, not employment shifts across occupations (see Appendix D),

echoing other studies that employ different methods (Atalay et al., 2020). The literature has

highlighted automation as an impactful technological driver, displacing humans in routine tasks

and leaving us to handle the more complex problems (Acemoglu and Restrepo, 2018).21

In Appendix B.3.6 I document additional evidence suggestive of a rise in specialization.

20At the 1-digit level of ISCO-08 occupations, the correlation between Bloesch et al.’s (2022) differentiation
measure and the non-routine abstract score from Mihaylov and Tijdens (2019), which is likewise available for the
ISCO classification, is 0.57. Many thanks to Justin Bloesch for kindly sharing their data.

21As this point and the literature review in Section 1 make clear, there is a very extensive literature documenting
the evolving nature of work. These studies typically focus on the resulting labor displacement effects or changing
skill prices, whereas here I highlight implications for human capital specificity.
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Notably, by linking the administrative SIEED data and the BIBB survey data, I find that, over

time, individuals have come to perform more similar tasks across different jobs – consistent with

task-specific human capital being increasingly important (cf. Gathmann and Schönberg, 2010).

Moreover, existing literature, notably Grigsby (2023), points in the same direction.

Complementing the evidence from task data, I next consider three examples that illustrate

changes in specialization more tangibly. The first example focuses on science. Research indicates

that a growing “burden of knowledge” has compelled individual researchers toward increasingly

narrow expertise.22 Concurrently, teamwork has grown in prevalence (e.g., Wuchty et al., 2007),

facilitating the integration of distributed, embodied knowledge. This example highlights a

connection between specialization and efficiency gains achievable through team work. While a

single scientist may still be capable of performing all tasks required for a project, collaboration

between individuals with specialized skills enables each to pursue their comparative advantage.23

The second example considers the medical sector. Over recent decades, the composition

of work has shifted away from routine tasks manageable by most healthcare professionals, like

patient data retrieval, toward others that require advanced training, for instance operating novel

equipment like advanced ventilators. Figure 2b shows that the number of distinct speciality

certificates issued by the American Board of Medical Specialities nearly doubled from 1980 to

2020. This example illustrates how specialization results from the interplay between technolog-

ical shifts in task composition and human capital acquisition decisions. The model will treat

specialization in reduced -form, without explicitly disentangling these two dimensions.24

A third example helps clarify that the trend toward increased specialization may not be

inexorable. Early studies of novel large-language artificial intelligence (AI) models suggest that

these technologies enable individuals to perform tasks outside their previous areas of expertise

(e.g., Brynjolfsson et al., 2023). Consequently, tools like chatGPT may actually reverse the

historical trajectory toward greater specialization, a theme I revisit in Section 6.

Summarizing this section:

Fact 3 (Specialization). Worker specialization has strengthened since the mid-1980s.

22See, for instance, Jones (2009); Akcigit et al. (2018); Ahmadpoor and Jones (2019); Pearce (2022).
23This example foregrounds the role of increasing knowledge costs in driving specialization. Alternatively, theories

of knowledge-based hierarchies highlight that declining communication costs can also lead to narrower individual
expertise (Garicano, 2000). Bloom et al. (2014) corroborate this mechanism using data from U.S. and European
manufacturing firms, with intranets exemplifying a communication improving technology. An example from
software development further illustrates the variety of real-world technological advances that can underpin a rise
in specialization. Version control systems (e.g., Git) allow multiple developers to simultaneously contribute to a
shared codebase, which encourages specialization as individuals can rely on teammates’ expertise for other parts.

24One could plausibly argue that the nature of production-related knowledge is the more fundamental factor. If
task-specific productivities reflect human capital investment, dispersion in productivity will be significant when
the returns to specialization are high. This is likely if knowledge acquisition for any single task involves increasing
returns due to fixed costs like time or ample opportunities for learning-by-doing (Rosen, 1983; Alon, 2018).
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To recap, a prominent feature of the overall rise in wage inequality since the mid-1980s is the

increased between-firm share (Fact 1); workers increasingly tend to be employed together with

coworkers of similar productivity (Fact 2); and specialization has strengthened (Fact 3). Next, I

develop a theoretical model in which a rise in specialization fosters more positively assortative

matching among coworkers, which generates widening wage gaps between but not within firms.

3 Theoretical model: team production and matching

This section presents and characterizes the theoretical model. Section 3.1 sets out a static theory

of firm organization and analytically derives a task-based microfoundation for coworker talent

complementarities. Section 3.2 embeds the microfounded production function into a dynamic

equilibrium matching model, wherein complementarities shape labor market sorting and the

firm-level structure of wage inequality.

3.1 Team production & the origins of coworker complementarity

I start by considering a single production unit and ask what the optimal assignment of tasks to a

team of ex-ante heterogeneous workers is, treating their number and composition as exogenous.

3.1.1 Environment

A team consists of a discrete number of workers = ∈ Z++, who perform tasks required for the

production of a single good. It is convenient to denote the set of team members byS = {1, ..., =}.
The employer owns the production technology and allocates workers’ time across tasks so as

to maximize production. Each worker 8 ∈ S, has a type G8 ∈ [0, 1], denoting their rank in the

worker talent distribution, and is endowed with one unit of time that they supply inelastically.

FINAL GOOD PRODUCTION. The final good, or service, is produced from a unit mass of tasks

� ∈ T = [0, 1] according to a constant elasticity of substitution (CES) aggregator,

. =

( ∫
T
@(�)

�−1
� 3�

) �
�−1
, (2)

where @(�) denotes the amount of task � used and � > 0 is the elasticity of substitution across

tasks. Tasks enter symmetrically; no task is inherently more or less valuable or difficult than

another. I next describe how @(�) is related to task production by individual workers.

TASK PRODUCTION. Task production is linear in efficiency units of labor. The amount of task
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� produced by worker 8, denoted H8(�), is thus equal to

H8(�) = 01I8(�);8(�), (3)

where I8(�) is 8’s efficiency in producing task � ∈ T , the parameter 01 is strictly positive and

controls the sensitivity of task output to worker efficiency, and ;8(�) is the time dedicated by 8 to

task �. With this notation, the time constraint for worker 8 is

1 =

∫
T
;8(�)3�. (4)

TASK-SPECIFIC EFFICIENCIES. The distribution of worker-task specific efficiencies, I8(�),
is at the core of the model. The setup is general enough to allow each worker’s efficiency to

vary across tasks, and for different workers to vary in productivity for any given task. To retain

tractability, I treat the task-specific efficiencies for worker 8, {I8(�)}�∈T , as the realizations of a

Fréchet-distributed random variable, drawn independently for each worker 8. This assumption

parallels trade models in the tradition of Eaton and Kortum (2002) and parsimoniously captures

both vertical and horizontal differentiation among workers. Thus, for all I ≥ 0, the distribution

of efficiencies for worker 8 is

�8(I) := %A{I8(�) ≤ I} = exp

(
−

(
I

�G8

)−1/" )
. (5)

A worker’s type, G8 , determines the scale of the worker-specific distribution. The (inverse) shape

parameter, " ∈ (0,∞), is identical for all workers and determines the degree of dispersion. Lastly,

� := Γ(1 + " − �")
1

1−� is a scaling term, with Γ denoting the Gamma function.25

A few remarks are in order to unpack this description. Equation (5) implies that workers

may differ along both absolute and comparative advantage lines. Each worker can produce

any task, but they are potentially heterogeneous in both their average task-specific production

efficiency and, conditional on that average, in the distribution of efficiencies across different

tasks. A worker’s type G connotes absolute advantage, or talent. Intuitively, if a high-G worker is

specialized in a particular task, they will be very productive at it. Formally, the expectation of

I8(�) is increasing in G8 . In addition, there is dispersion in worker-task specific efficiencies; for a

given value of G8 , 8 is better in some tasks than in others. The degree of dispersion is increasing

in ". Figure 3 illustrates how the distribution of task-specific productivities varies with G and ".

25A couple of technical remarks: First, throughout the paper it is assumed that 1 + "(1 − �) > 0, for reasons
discussed when deriving the optimal organization. Beyond requiring that tasks not be too substitutable, under
the maintained assumptions the precise value of � will not influence worker-task assignment or team productivity.
Second, the scaling term � ensures that varying " or � does not mechanically change production levels.
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Figure 3: Illustration of the distribution of worker-task specific efficiencies

Notes. This figure illustrates how the probability density function associated with the Fréchet distribution in
equation (5) varies with the scale parameter G and (inverse) shape parameter ". The left panel assumes " = 0.3, the
right panel assumes G = 0.5. For this illustration, � = Γ(1 + ").

The key technology parameter is ". Labelled “specialization,” it controls the degree of disper-

sion in an individual worker’s task-specific productivities and thus – from a team perspective –

the importance of comparative advantage across coworkers.26 Returning to the discussion in

Section 2.3, " captures in reduced-form the nature of both task requirements and worker skills,

which jointly determine the importance of specialization.

ROLE OF FIRMS. Completing the model description is an account of how team production

differs from multiple individuals producing the final good separately. Inside a team, collaboration

in the sense of a division of labor is possible. Formally, the amount of any task that is available

for final good production, @(�), is the sum over production of that task by all team members,

@(�) =
=∑
8=1

H8(�). (6)

This account rests on the idea that a central role of firms is to coordinate the collaboration of

workers with specialized knowledge (cf. Becker and Murphy, 1992; Garicano, 2000). On this

view, a firm not merely incorporates the intellectual property rights, or a “recipe”, for a particular

product, nor is it just the sum of machines and tools with which workers are equipped. Much of

the knowledge required for production is intangible and embedded in individuals with limited

time to learn and work, as opposed to that knowledge being codified and tradeable on markets.

26Section 3.1.4 offers a more careful treatment of the distinction between within-worker productivity dispersion
and across-coworker comparative advantage.
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Hence, its mobilization and efficient use requires individuals to specialize and collaborate. An

important role of firms is to coordinate this process.27

ORGANIZATIONAL OPTIMIZATION PROBLEM. This role of the firm is reflected in its optimization

problem. Solving a ‘mini-planner’ problem, it chooses total task usage {@(�)}�∈T , individual

task production {{H8(�)}�∈T }=8=1 and individual time allocation {{;8(�)}�∈T }=8=1 to maximize

total production., subject to equations (2)-(6). The associated Lagrangean is

ℒ(·) = . + �
[( ∫

T
@(�)

�−1
� 3�

) �
�−1
− .

]
+

∫
T
�̃(�)

( =∑
8=1

H8(�) − @(�)
)
3�

+
=∑
8=1

{
�!8

(
1 −

∫
T
;8(�)3�

)
+

∫
T
�8(�)

(
01I8(�);8(�) − H8(�)

)
3� +

∫
T
�̄8(�)H8(�)3�.

}
,

Here, �, �!
8

, �8(�), �̃(�) respectively denote the shadow values of, respectively, total production,

8’s time, a unit of task � produced by 8, and a unit of task � used in final good production,

while �̄8(�) relates to a non-negativity constraint in task production. Note in particular, that the

multiplier �!
8

captures the opportunity cost of worker 8’s time, reflecting that each worker’s time

is scarce (cf. time constraint (4)).

3.1.2 Solving the organizational problem

Solving for the optimal production plan involves two main steps. We first derive the demand

for tasks for a given set of shadow prices, treating those as known, and then determine these

shadow prices given the distribution of task-specific productivities across workers. To begin,

taking the first-order condition (FOC) with respect to @(�), substituting for. from equation (2)

and defining&(�) := �̃(�)@(�) yields

&(�)
�.

=

(
�̃(�)
�

)1−�
. (7)

Now integrate on both sides and use that the shadow value of all tasks used is related to total

production (as derived in Appendix A.1.1),

& :=

∫
T
&(�)3� = �.. (8)

27Rivkin and Siggelkow (2003, 292), quoted in Dessein and Santos (2006) write: “The [qualitative management]
literature is unified in what it perceives as the central challenge of organizational design: to divide the tasks of a firm
into manageable, specialized jobs, yet coordinate the tasks so that the firm reaps the benefits of harmonious action.”
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This gives an expression for the shadow cost index:

� =

( ∫
T
�̃(�)1−�3�

) 1
1−�
. (9)

Next, who should produce which tasks, and what does that imply for the shadow costs faced

by the firm, i.e., for {�̃(�)}�∈T ? To answer this question, observe first that the FOC with respect

to H8(�) implies that �̃(�) = �8(�) if H8(�) > 0. Since some worker will provide a given task �,

and with task production (equation (3)) featuring constant returns to scale, cost-minimization

requires that the shadow value of a task be equal to the minimum shadow cost of producing it.

When combined with the FOC w.r.t. ;8(�), this implies that

�̃(�) = min
8∈S

{
�!
8

01I8(�)︸  ︷︷  ︸
�8(�)

}
, (10)

so that worker 8 produces task � if 8 has the lowest ratio of any worker’s shadow value of their

time over their efficiency in producing that task.

That this type of problem – with an arbitrarily large, discrete number of potential producers

(i.e., workers) of a continuum of tasks – is tractable under the assumptions made is a key insight

of Eaton and Kortum (2002). Crucially, the max-stability property of the Fréchet distribution

means that the maximum of Fréchet-distributed random variables is also Fréchet. Hence, the

distribution of shadow costs conditional on any task being performed by the worker with a

comparative advantage (cf. equation (10)) is analytically tractable.

The following lemma summarizes what share of tasks is performed by each worker, and at

what (shadow) cost the final good can be produced.

Lemma 1. If workers’ task-specific efficiencies are independently Fréchet-distributed, then:

(i) The shadow cost index is

� =

(∑
8∈S

(
01G8

�!
8

)1/")−"
. (11)

(ii) The fraction of tasks for which worker 8 is the least-cost provider is

�8 := Pr{�8(�) ≤ min
:∈S\8

�:(�)} =
(G8/�!8 )1/"∑
:∈S

(
G:/�!:

)1/" . (12)
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(iii) The shadow value of all tasks used in final goods production that were produced by worker 8,

defined as&8 :=
∫
T �̃(�)H8(�)3�, is a fraction �8 of the total shadow value of tasks used:

&8 = �8&. (13)

Proof. Appendix section A.1.2. �

Using Lemma 1, and normalizing the shadow price of final goods output to unity (� = 1), we

can characterize the optimal organization of production.

3.1.3 Characterizing the optimal organization of production

The optimal organization of production is characterized by three main features. First, there is

complete division of labor: every worker performs an interval of tasks, but no strictly positive

mass of tasks is performed by more than one worker. Second, each worker is assigned those

tasks in which she has a comparative advantage. Thus, the set of tasks performed by worker 8 is28

T8 =
{
� ∈ T :

I8(�)
�!
8

≥ max
:≠8

I:(�)
�!
:

}
(14)

This means, concretely, that each task is performed by that worker who is best at the task, but

accounting for the opportunity cost of time. For example, some worker 9 ∈ S might be endowed

with a high value of G 9 relative to coworkers and indeed be most efficient at some task �, but it is

not optimal to assign � to 9 because 9’s scarce time is more productively devoted to other tasks in

which 9 is disproportionately more productive still.

Third, more talented workers optimally perform a greater share of tasks than less talented

team members, but to a lesser extent if specialization " is marked:

Corollary 1 (Task shares). Under the optimal production plan the share of tasks produced by

worker 8 is equal to

�8 =

(
G

1
1+"
8

) (∑
:∈S
(G:)

1
1+"

)−1
. (15)

Hence:

(i) %�8
%G8

> 0 and %�8
G:

< 0 for : ≠ 8; and

28Strictly speaking, we would need a tie-breaking rule for tasks where multiple workers have the same shadow
cost. But those tasks have mass zero anyway, so, under that proviso, I retain the weak inequality in equation (14).
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(ii) considering two team members 8 and 9, and supposing that G8 > G 9 , it holds that �8 < � 9
for " < ∞, �8/� 9 → G8/G 9 as "→ 0, and �8/� 9 → 1 as "→∞.

Proof. Equation (15) follows directly from Lemma 1, (i) and (ii), given � = 1; the remainder is

then immediately implied by differentiation or taking the limit. �

Intuitively, it is optimal for a more talented team member, say 8, to perform a greater share

of tasks compared to a less talented coworker, say 9. If this were not the case, and noting that

each task is necessary to some degree, there would be an inefficiently high amount of those tasks

produced in which 8 has a comparative advantage. However, for greater values of ", expanding

8’s responsibilities in this way is more costly, as her task-specific efficiency now diminishes

more rapidly and the opportunity cost of 8 not performing those tasks in which she is best is

correspondingly also higher. Simply put, even the most talented worker may lose much time

when performing tasks they are not specialized in. In the limit, just as great a share of tasks ends

up being (optimally) performed by each team member, irrespective of differences in talent.

The following result summarizes how team members’ talents jointly pin down team output.29

Integrating over tasks under the optimal organizational plan, the number and quality types of

team members are sufficient statistics for team output.30

Proposition 1 (Aggregation result). Team output . can be written as a function of members’

talent types, 5 : [0, 1]= → R+,

5 (G1, · · · , G=) = =1+"︸︷︷︸
efficiency gains

(
1

=

=∑
8=1

(01G8)
1

1+"

)1+"
︸                   ︷︷                   ︸

complementarity

. (16)

Proof. See Appendix Section A.1.3. �

The first term summarizes the “Smithian” efficiency gains from team production relative

to a counterfactual in which every worker produces all tasks. Suppose that there is no division

of labor, perhaps because workers are not coordinated by a firm. Then each worker produces

29This aggregation result relates to the seminal paper of Houthakker (1955) and, more recently, Acemoglu and
Restrepo (2018), Martinez (2021) and Ocampo (2022). In the IO literature, an important reference is Anderson
et al. (1989). In independent work, Dvorkin and Monge-Naranjo (2019) likewise exploit properties of the Fréchet
distribution to derive a microfoundation for an aggregate CES production function.

30Notice that the elasticity of substitution across tasks, �, does not show up in equation (16). Technically, as noted
by Eaton and Kortum (2002, Footnote 18), this holds as long as we maintain that 1 + " − �" > 0, in which case �
only appears in a constant term that cancels with the scaling term �. The irrelevance of � in that sense is a tight
implication of the Fréchet, and it serves to sharply bring into relief that coworker complementarities do not hinge
on the assumption that tasks combine in a Leontief fashion (e.g., Kremer, 1993). In a more general setting, the
strength of coworker complementarities would also be influenced by the value of �.
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all tasks – in proportions minimizing their respective individual shadow costs of producing the

final good – and it is straightforward to show that final output is simply
∑=
8=1 01G8 . The relative

gains from team production are greater as specialization is more important. This echoes a

long-standing theoretical literature (e.g., Becker and Murphy, 1992; Garicano, 2000), as well as

cohering with recent empirical studies (cf. Section 1).

The second term, which takes the form of a CES function, summarizes interdependencies

in coworkers’ realized productivity and shows that the importance of these independencies is

increasing in ". Provided that " > 0, the value of any worker’s time is a function not only of

her own endowments but also her coworkers’, because having more talented colleagues enables

a worker to focus on those tasks in which she is particularly adept. The absolute magnitude

of the productivity gain that worker 8 experiences from a given increase in coworkers’ talent is

increasing in " – since a higher value of " means that her productivity varies more depending

on which tasks she is assigned to – and in her own productive potential G8 , as more output is at

stake. These interdependencies can be summarized in terms of the elasticity of substitution.31

Corollary 2 (Coworker complementarity). The inverse elasticity of substitution (“elasticity of com-

plementarity”) is defined as �8 9 :=
% ln( 59/ 58)
% ln(G8/G 9) , for any homothetic production function 5 (G1, ..., G=),

where 58 = % 5 /%G8 is a partial derivative. For the production function in equation (16), it is

symmetric and identical for all pairs of workers and equal to � = "
1+" .

The microfounded production function thus reveals the usual CES elasticity parameter to

be a reduced-form object – with no claim to being stable over time or ‘structural’ – that under

the optimal assignment of tasks, varies with ". Simply put, the more horizontally differentiated

team members are at the task level, the more limited is the scope for substitution in terms of

workers’ absolute advantage.

Coworker complementarity implies that team output is lowered if, for a given (arithmetic)

average value of G8 , members vary in their talent. In statistical terms, the “complementarity”

term in equation (16) corresponds to the power mean of the underlying G8 values. When " = 0,

it reduces to the arithmetic mean, consistent with an efficiency-unit treatment of worker types.

Otherwise, by the power mean inequality, the stronger the degree of complementarity, the greater

is the weight on the talent of the least-capable team member(s) in determining total output.32

31The appropriate measure of substitutability in the case of more than two inputs is the Morishima (1967) elasticity
(Blackorby and Russell, 1989). Under the functional form of equation (16), the Morishima elasticity is identical
across worker pairs and identical to the Hicks and Allen definitions (Blackorby and Russell, 1981). For recent
applications of the MES, see Baqaee and Farhi (2019) and Ocampo (2022).

32Proposition 1 provides a microfoundation for the reduced-form model assumed by Ahmadpoor and Jones (2019)
in their study of team production and matching in science and invention. Consistent with the argument presented
here, and " > 0, their empirical analysis finds evidence not only of a team advantage effect but also that team
impact is weighted toward the lower-impact rather than higher-impact team members.
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Hence, larger values of " render coworker mismatch – dispersion in team members’ talents –

more costly in terms of output.

To summarize, deeper specialization enhances the scope for efficiency gains from collab-

oration, yet at the same time, output also becomes more vulnerable to relatively less talented

team members – the composition of a team becomes more important for joint productivity. The

next section therefore endogenizes team formation. Before doing so, the next sub-section briefly

introduces an extension that helps tightening the interpretation of the key parameter ".

3.1.4 Extension: specialization and comparative advantage

So far, we adopted a very low-dimensional parameterization of workers’ characteristics, describ-

ing = team members’ productivity distributions over tasks in terms of an =-dimensional vector of

absolute advantage types, x = (G1, . . . , G=)′, and a common shape parameter ". This approach

is rich enough to capture both absolute and comparative advantage considerations while remain-

ing tractable, including in the dynamic setting introduced in the following section. However,

it also conflates two distinct concepts, namely within-worker productivity dispersion across

task and comparative advantage across coworkers. This brief section sketches an extension that

formalizes this distinction and offers an interpretation in the context of team production.

In Section 3.1.1, and specifically equation (5), task-specific productivity draws were assumed

to be independent across coworkers. As a result, the common (inverse) shape parameter "

effectively controls two conceptually distinct moments: the dispersion of productivity across

tasks for any a given worker, or specialization; and the joint distribution of relative productivities

for any given tasks across individuals, and therefore the strength of comparative advantage.

We can relax the independence assumption by supposing instead that the joint distribution

of task-specific productivities across coworkers satisfies

Pr [I8(�) ≤ I1, . . . , I=(�) ≤ I=] = exp

−
©«
=∑
8=1

((
I

�G8

)− 1
"̃

) 1
� ª®¬

� , (17)

where "̃ is the common shape parameter of the the marginal Fréchet distributions, while � ∈
(0, 1] controls correlation in draws across workers. The baseline setup featuring independence

across coworkers is nested for � = 1. Yet, with decreasing �, coworkers are increasingly similar

in what they are specialized in; and for �→ 0, the strength of comparative advantage vanishes

despite each worker having specialized skills. Importantly, in the extension "̃ unambiguously

captures within-worker productivity dispersion and, thus, specialization.

Since the symmetric, multivariate Fréchet distribution retains the max-stability property, an
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aggregative team production function analogous to equation (16) can be derived:33

. = 5 (x; "̃, �) = =1+"̃�
(
1

=

=∑
8=1

(01G8)
1

"�+1

) "̃�+1
. (18)

Intuitively, this representation tells us that output. is greater, other things equal, if coworkers

are similar to each other in terms of how talented they are (for a given arithmetic mean of x);

and if they are more dissimilar in terms of what tasks they are good at, that is, if � → 1. The

latter consideration is abstracted from in the baseline version.

This extension makes clear that all the results discussed thus far go through with " = "̃�. For

the remainder of the paper, I will retain the simplifying assumption of independent draws across

coworkers but where there is ambiguity, " ought to be interpreted in terms of within-worker

productivity dispersion, i.e., specialization.34

3.2 Team matching & the macro implications of coworker complementarity

Having previously considered one team of given composition, suppose now that there are many

workers and many potential employers. What teams of workers would different multi-worker

firms hire – who does, in fact, work with whom – and how do matching patterns and wage

distribution respond to changes in "? To answer this set of questions, in this section I embed the

aggregative team production model into a general-equilibrium environment where firms and

employees meet in a search-frictional labor market.

To motivate the inclusion of search frictions, it is instructive to take a step back and ask,

what matching patterns would emerge in a frictionless labor market? The answer is that for

any value of " greater than zero, the equilibrium allocation features pure positive assortative

matching (PAM), and thus no within-firm worker talent dispersion. This is the efficient outcome.

Since production is supermodular in talent for " > 0, this result immediately follows from

Becker (1973), extended to the many-to-one case by Kremer (1993). Specifically, when a worker’s

marginal productivity is increasing in coworkers’ quality, a feasible Pareto improvement exists

unless all team mates of a worker of type G are likewise of type G. Although both a low-G and

33See McFadden (1977, 1980) and Train (2009) regarding the development of these tools in the context of proba-
bilistic choice, and Lind and Ramondo (2023) for a recent application to international trade. The aggregation result
developed here is, to the best of my knowledge, novel.

34The extension sketched in this sub-section can be embedded into the dynamic matching model as well, in which
case � is treated as being endogenous to matching decisions, while "̃ continues to be a structural parameter. This
extended micro-foundation motivates the introduction of meeting-specific productivity shocks that generate ran-
dom variation in match outcomes conditional on worker types and affords them a natural structural interpretation
in terms of horizontal match quality: how dissimilar are team members in what they are good at, conditional on ".
It also facilitates an alternative strategy to identify " that directly exploits the production function microfoundation.
A future revision of the paper will fully develop these results.
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a high-G worker’s productivity is increasing in coworker talent, complementarities mean that

the benefit from increased coworker talent is differentially larger for the high type. Indeed,

for any initial value "0 > 0, an increase to "1 > "0 does not alter equilibrium matching

patterns. Intuitively, in the absence of frictions even weak complementarities imply that firms

with other talented employees pn their payroll can always outbid other firms with less talented

employees when competing for talented new hires. The equilibrium joint distribution of worker

talent is, thus, degenerate; matching is characterized by a single-valued function �(G) = G that

deterministically relates worker and coworker types.

This strong prediction points to two distinct reasons for incorporating search.35 First, the

prediction of pure positive sorting is counterfactual. The correlation between coworkers’ types

would need to equal one, which is inconsistent with the data. Second, variation in coworker

types conditional on a worker’s own type is essential to empirically measure worker types

and coworker complementarities. Search frictions align the structural model more closely

with the empirical analysis by generating stochastic matching. In their presence, some degree

of “mismatch” between team members’ talent types is tolerated, since waiting is costly. The

equilibrium amount of mismatch in crucially depends on the strength of complementarities.

3.2.1 Environment

I embed the team production function into a continuous-time version of Herkenhoff et al.’s

(2022) equilibrium search model of the economy in steady state. To focus on the key mechanism

of changing production complementarities, I abstract from learning and, in the baseline, from on-

the-job search (considered in Section 5.4). These simplifications afford a tight characterization of

the equilibrium properties in a stylized version of the model, and permit a transparent derivation

of a novel identification result that indicates how the strength of complementarities can be

measured using micro data.36

DEMOGRAPHICS, PREFERENCES AND PRODUCTION. Time is continuous. All agents are

infinitely-lived and have risk-neutral preferences over consumption discounted at rate � ∈ (0, 1).
There is a unit mass of workers, denoted 3F = 1, who are either employed (4) or unemployed

(D). Workers are ex-ante heterogeneous, as just described. For ease of exposition, I often refer

to a “worker G” instead of a “worker of type G.” Noting that the production function (16) is

increasing in each argument, I follow Hagedorn et al. (2017) in treating G as a worker’s rank in

the underlying productivity distribution, so the distribution of worker types is uniform. The

35In principle, other frictions could be considered, including information and screening costs or spatial restrictions.
Search frictions, besides being the most common route toward stochastic sorting and they are particularly useful for
quantitative analyses, as we can bring to bear micro data on labor market transitions to discipline search costs.

36My notation differs from Herkenhoff et al.’s (2022), seeking to maximize comparability with the standard model
of matching between workers and one-worker firms (e.g., Hagedorn et al., 2017).
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production function thus maps from an ordinal to a cardinal space.37 There is a fixed unit mass

of firms, 3 5 = 1, that are either idle, with mass 3 5 .0, or actively producing in a match. I write

down the model assuming that all firms are ex-ante homogeneous, the idea being that the firm

matters, namely through team assembly, but its value is tightly linked to the team it employs.38

Production requires a firm and either one or two employees. That is, the maximum team size

is = = 2. This assumption of sharply decreasing returns is evidently unrealistic and made for

computational reasons; the state space combinatorically expands with team size, as comple-

mentarities mean that we need to keep track of every team member’s type. A team size of two is

sufficient, however, to study how coworker complementarities shape between-firm inequality.

Section 4.1 discusses the mapping between theory and data in light of this assumption.39

Denote the production function of a single-worker firm 51(G) : [0, 1] → R+, and that of a

two-worker firm as 52(G, G′) : [0, 1]2→ R+. Note that I indicate the team size state as a subscript

to aid orientation when there is scope for confusion, but suppress it otherwise, and I refer to the

coworker type by G′. A key benefit from Proposition 1 is that we do not need to keep track of

worker-task specific efficiencies or worker-task assignment, which happens ‘in the background’;

instead we only need to keep track of workers’ quality types.

POPULATION COMPOSITION. Let 3<.1(G) denote the measure of producing matches consisting

of a firm and one worker of type G, while 3<.2(G, G′) is the corresponding measure of matches

with an additional coworker G′. The following adding-up property holds for workers of type G:

3F(G) = 3D(G) + 3<.1(G) +
∫

3<.2(G, G̃′)3G̃′, (19)

so that the total measure of type G, 3F(G), is the sum of type-G workers who are unemployed,

3D(G), in one-worker matches or in two-worker matches. The aggregate unemployment rate is

obtained by integrating over the first of these three terms, D =
∫
3D(G)3G. Similarly for firms,

3 5 = 3 5 .0 +
∫

3<.1(G)3G +
1

2

∫ ∫
3<.2(G, G′)3G3G′. (20)

Dividing by 2 in the last term avoids double-counting, 3<.2(G, G′) being symmetric.

TIMING. Within any increment of time, each matched worker may be exogenously separated

from their employer at an exogenous Poisson rate �. There are no endogenous separations.

37As noted by Hagedorn et al. (2017, 2.1.1), if the non-rank distribution of workers isΦ and the production function

which takes the non-rank type of worker as an input is 5̂ (Ĝ), then 5 (G) = 5̂ (Φ−1(G)). The logic straightforwardly
extends to multiple workers.

38A Working Paper version incorporated ex-ante heterogeneity in firm productivity, underscoring that results
proved here do not hinge on assuming otherwise, but the gain in generality was outweighed by a loss in clarity.

39Appendix section C.2.3 shows that allowing for a maximum team size equal to 3 leads to qualitatively identical
and quantitatively very similar predictions as the baseline model.
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Next, unmatched workers and all firms engage in random search and matching decisions. Upon

meeting, the types G are perfectly observed, but the task-specific productivities are revealed only

after the hiring decision is made. Then production and surplus sharing happen.

SEARCH AND BARGAINING. Every unemployed worker engages in search. So do all firms with

empty spots, the total number of which is E = 3 5 .0+
∫
3<.1(G)3G. It is not permissible to replace

a worker with a better matched candidate, so two-worker firms do not search. Apart from being

hard to reconcile with labor market policies in Germany – the economy on which I will estimate

the model – such replacement hiring would distract from the central trade-off between match

quality and search costs. Unemployed workers contact a firm at an exogenous Poisson rate �D .40

Hence, for any searching firm the rate of meeting an unemployed worker is �E.D =
�DD
E . Wages

are continuously renegotiated and workers’ bargaining power is $ ∈ [0, 1]. Negotiation takes

the generalized Nash form, concerns the entire surplus, and the firm treats each employee as

marginal, so that their outside option is unemployment. This protocol ensures that all matching

decisions are privately efficient and can be characterized by parties’ joint surplus, which in turn

only depends on individual types (cf. Bilal et al., 2022). Moreover, the wage is unaffected by the

order with which workers join a team.

3.2.2 Definition and sharing of joint surplus

I now turn to joint value and match surplus functions and describe the protocol by which surplus

is shared. Denote the joint value of a match between a firm and a type-G worker as

Ω1(G) = +5 .1(G) ++4.1(G), (21)

where+4.1(G) is G’s value of being employed alone at a firm, whose value in turn is+5 .1(G). Then

the surplus generated by such a match is

((G) = Ω1(G) −+5 .0 −+D(G), (22)

where+D(G) is the value of unemployment for G and+5 .0 is the value of an idle firm.

Similarly, the joint value of a firm with team (G, G′) is

Ω2(G, G′) = +5 .2(G, G′) ++4.2(G |G′) ++4.2(G′|G), (23)

with+4.2(G |G′) denoting the value of G being employed in a team if the coworker is of type G′.

40This meeting rate could be endogenized by introducing vacancy-posting decisions and a matching function.

26



Hence, the surplus generated when a firm that already has employee G′ hires a type G worker is:

((G |G′) = Ω2(G, G′) −Ω1(G′) −+D(G). (24)

This surplus will rise in the output generated by the team, yet fall in both sides’ outside values.

((G |G′) is not, in general, symmetric in the two arguments even ifΩ2(G, G′) is, because it matters

for both outside options whether type G is the potential employee or type G′ is (unless G = G′).

Turning to surplus sharing, the wage of a worker of type G employed alone satisfies

(1 − $)
(
+4.1(G) −+D(G)

)
= $

(
+5 .1(G) −+5 .0

)
, (25)

In a two-worker firm, the wage F(G |G′) of a type-G worker with a coworker of type G′ satisfies

(1 − $)
(
+4.2(G |G′) −+D(G)

)
= $

(
+4.2(G′|G) ++5 .2(G, G′) −+4.1(G′) −+5 .1(G′)

)
. (26)

3.2.3 Equilibrium conditions

I focus on a stationary equilibrium. One of the equilibrium conditions is that agents solve a set of

Hamilton-Jacobi-Bellman (HJB) equations, which characterize optimal matching decisions and

associated values, taking the distribution of agents over type and employment states as given. In

addition, the stationary distribution satisfies a system of Kolmogorov-Forward equations (KFEs)

given endogenous matching decisions.

As the bargaining protocol ensures that matching decisions are privately efficient, they are

related to surplus values as follows:

ℎ(G) = 1{((G) > 0}, (27)

ℎ(G |G′) = 1{((G |G′) > 0}. (28)

These functions describe, respectively, whether a match between an unmatched firm and a

type-G worker will (optimally) be consummated; and whether a firm that already employs worker

G′ is willing to hire a worker G.41

OPTIMALITY. Starting with unmatched agents, the asset value of an idle firm,+5 .0, satisfies

the following HJB equation:

�+5 .0 = (1 − $)�E.D
∫

3D(G)
D

((G)+3G, (29)

41I impose that matching only takes place when the relevant surplus is strictly greater than zero; since the
indifference case occurs for a measure zero of agents, this assumption has no bearing on the result.
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where for any A, I let A+ = max{A, 0} indicate the optimal decision, to ease notation. The

discounted value thus corresponds to the weighted conditional expectation of the firm’s share of

the match surplus generated with an unemployed worker times the unconditional probability of

meeting any unmatched worker. The value of such an unemployed worker G is given by

�+D(G) = 1(G) + �D$
[∫

3 5 .0

E
((G)+ +

∫
3<.1(G̃′)

E
((G |G̃′)+3G̃′

]
. (30)

Notice that we need to take into account the worker’s flow value from being unmatched, 1(G), as

well as differentiating between the worker meeting an unmatched firm or a one-worker firm.

What about the matched agents? To understand the model mechanics, it is instructive to

consider the joint value of firm and worker(s) – instead of jumping straight to surplus values –

starting with that of a firm employing a pair of workers G and G′:

�Ω2(G, G′) = 52(G, G′) + �
[ (
−Ω2(G, G′) +Ω1(G) ++D(G′)

)︸                                  ︷︷                                  ︸
((G |G′)

+
(
−Ω2(G, G′) +Ω1(G′) ++D(G)

)︸                                  ︷︷                                  ︸
((G′ |G)

]
.

The discounted value contains the flow value of production, and at rate � either G or G′ leaves.

Lastly, and importantly, the joint value of a firm with a type-G employee satisfies

�Ω1(G) = 51(G) + �
[
−Ω1(G) ++D(G) ++5 .0

]
(31)

+ �E.D
∫

3D(G̃′)
D

(
−Ω1(G) ++4.2(G |G̃′) ++5 .2(G, G̃′)︸                                    ︷︷                                    ︸

(1−$)((G′ |G)

)+
3G̃′.

The discounted value thus includes the flow value of production. At rate � the match is exoge-

nously destroyed. But at rate �E.D , the firm is contacted by an unmatched worker of type G̃′, who

is hired if the sum of values accruing to the firm and G from teaming up exceed their joint value

if G̃′ is not hired, that is, if the joint surplus from a match is positive.

POPULATION DYNAMICS. In stationary equilibrium, the inflows and outflows into different

states balance. The KFEs summarize these flows for each state, with the matching decisions mod-

ulating the flow intensities implied by exogenous meeting rates and the distributions themselves.

As the equations are straightforward but lengthy, they are collected in Appendix A.2.1.

3.2.4 Equilibrium definition and objects

In stationary equilibrium, agents’ values must be consistent with the distributions to which

they give rise, and vice versa. Appendix A.2.2 derives the recursions for the surplus values, see
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specifically equations (A.16) and (A.19), so that the optimality conditions are fully described in

terms of the values of unmatched agents and surpluses. A formal definition follows.

Definition 1. A stationary search equilibrium is a tuple of value functions,
(
+D(G), +5 .0, ((G), ((G |G′)

)
,

together with a distribution of agents across states,
(
3<.1(G), 3<.2(G, G′)

)
, such that (i) the value

functions satisfy the HJB equations (29), (30), (A.16) and (A.19) given the distributions; and (ii)

the stationary distributions satisfy the KFEs (A.13)-(A.14) given the policy functions implied by the

value functions according to equations (27)-(28).

The equilibrium needs to be computed numerically because of a non-trivial general-equilibrium

interaction: Agents’ expectations and matching decisions must conform with the distribution

to which they give rise, yet as that distribution evolves, so do agents’ expectations over future

meeting probabilities and, hence, their optimal actions.

EQUILIBRIUM OBJECTS. The model implies specific coworker sorting matching patterns

as well as a decomposition of wage inequality into a between- and within-employer compo-

nent. Consistent with the focus on multi-worker firms, and for the remainder of the paper,

I consider only workers employed in a team to compute these moments. As a preliminary

step, note that the joint distribution of worker types in teams is characterized by the density

)(G, G′) = 1
42
3<.2(G, G′), where 42 =

∫ ∫
3<.2(G, G′)3G3G′ is total employment in teams. Hence,

the unconditional density of types in teams is )(G) =
∫
)(G, G̃′)3G̃′, while the distribution

of coworker types conditional on type is )(G′|G) = )(G,G′)∫
)(G,G̃′)3G̃′ . The corresponding CDFs are

denotedΦ(G) andΦ(G′|G).
One measure of sorting is the coworker correlation coefficient,

�GG =

∫ ∫
(G − Ḡ)(G′ − Ḡ)3Φ(G′|G)3Φ(G)∫ (

G − Ḡ
)2
3Φ(G)

, (32)

where Ḡ =
∫
G3Φ(G) is the average worker type among those in teams. Alternatively, providing a

more disaggregated picture, the mapping between worker type and average coworker type is

�̂(G) =
∫

G̃′3Φ(G̃′|G), (33)

which is the natural extension of a deterministic matching function to a stochastic setting.
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Next, the average log wage and the variance of individual or mean firm-level (log) wages are

ln F̄ =

∫ ∫
lnF(G |G′)3Φ(G′|G)3Φ(G), (34)

�2F =

∫ ∫ (
lnF(G |G′) − ln F̄

)2
3Φ(G′|G)3Φ(G), (35)

�2F̄ =

∫ ∫ (
ln F̄(G, G′) − ln F̄

)2
)(G, G′)3G3G′, (36)

where ln F̄(G, G′) = 1
2

(
lnF(G |G′) + lnF(G′|G)

)
denotes the average log wage in a firm with team

(G, G′). The between-employer share of wage inequality is �2
F̄
/�2F .

3.2.5 Elucidating the mechanism in a simplified environment

The key trade-off shaping within- and between-firm worker heterogeneity relates to the matching

decision to be taken when a firm with a type-G employee meets an unmatched worker of type G′.

This decision, encapsulated in policy function ℎ(G′|G), balances match quality considerations

and search costs.42 If the hire is made, output 52(G, G′) is produced and shared. Else, the firm

with its employee produces 51(G), the unmatched worker receives the flow value 1(G′), and both

sides search for another production partner with whom they can generate a positive surplus.

The strength of coworker production complementarity determines to what extent team

output is influenced by the match quality between G and G′. Suppose that specialization (")

and, hence, coworker complementarity is pronounced, and consider a firm with a talented

worker G and a less capable potential hire G′. The match surplus is low, because G’s potentially

high productivity would be dragged down by collaborating with G′. It is preferable for both

sides to keep searching. Consequently, in a high-" economy, only workers of similar talent are

matched together. If, however, " is low, then G can perform a greater share of tasks without this

substantially lowering the average efficiency with which she performs these tasks, mismatch is

less costly, and consequently the degree of coworker sorting is low.

To further clarify this mechanism, I briefly sketch and describe key findings from a stylized

version of the model, set out in Appendix A.3. While not suited for quantitative analysis, it

qualitatively preserves the same mechanism operative in the full model and the equilibrium can

be characterized analytically. I adapt the setup of Eeckhout and Kircher (2011) to the context

of team formation. In brief, this is a finite-horizon model and instead of search costs arising

because agents discount the future, workers incur a fixed search cost if they reject a match and get

paired with their optimal coworker type in return. In this environment, the matching decision

42The decision of an unmatched firm and an unmatched worker is quite trivial, as the surplus is generally positive
across potential matching combinations for plausible parameterization.
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obeys a simple threshold rule: Types G and G′ will be teamed up if and only if the absolute

type distance, |G − G′|, is lower than a threshold value B, which is decreasing in the strength of

complementarity and increasing in the cost of search. I derive closed-form expressions for the

conditional match distribution and firm-level average wages, yielding the following predictions.

Corollary 3 (Coworker complementarity and distributional outcomes). In the simplified model, a

marginal increase in coworker complementarity lowers the equilibrium threshold B∗, other things

equal, which leads to the following outcomes.

(i) The correlation between coworkers’ types is higher, specifically �GG = (2B∗ + 1)((B∗)2 − 1)2.

(ii) The average coworker type is lower for types of quality below B∗, greater for types above 1− B∗,
and unchanged for intermediate types. Specifically, the expected coworker type is

�̂(G) =


G+B∗
2 for G ∈ [0, B∗)
G for G ∈ [B∗, 1 − B∗]
1+G−B∗

2 for G ∈ (1 − B∗, 1].

(iii) The between-firm share of the variance of wages, �2
F̄
/�2F , is higher (for a precise expression,

see Appendix equation (A.23)).

Figure 4a graphically illustrates the equilibrium matching outcomes under four alternative

parameterizations. For any worker type, it plots the average coworker type, �̂(G). Consider

first the dotted line, which represents the case of perfect substitutability between coworker

types. Then �̂(G) is the same for any G. Next, the dashed-dotted line illustrates that when

there are complementarities and no search frictions, pure assortative matching obtains. The

remaining two lines represent cases with both complementarities and search frictions. Under

weak complementarities, search frictions mean that worker types below the threshold B∗ are

paired up with coworkers that are better than themselves by a margin of up to B∗ (solid line). The

opposite applies to high types, that is if G > 1 − B∗. For types in between those two kink points,

the average coworker type corresponds to their own type, as the matching set is symmetric.

Now consider the case with stronger complementarities and, hence, a lower value of B∗ (dashed

line). For an intermediate worker, the matching set shrinks symmetrically in both directions, but

for the highest (lowest) types, stronger complementarities can only raise (lower) the minimum

(maximum) type with whom they get matched in equilibrium, so that the average coworker type

is higher (lower) than under weak complementarities.

The same mechanism that links complementarities and labor market sorting in the tractable,

simplified model also operates in the quantitative model, as Figure 4b illustrates.
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Figure 4: The strength of coworker complementarity shapes assortative matching

Notes. The left panel is based on the stylized model and plots, for each worker type G, the expected coworker
type, �̂(G). Each line represents an alternative equilibrium assignment, which is associated with a threshold B∗.
Specifically, “Random sorting” corresponds to B∗ = 1; “frictionless” to B∗ = 0; “Low complementarity” to B∗ = 0.45;
and “High complementarity” to B∗ = 0.25. The right panel plots coworker sorting, as measured by �GG against the
elasticity of complementarity, �. The solid line is derived from the quantitative model; the calibration of parameters
other than � is taken from Section 4.4; I allow for small match-specific shocks to smooth the plot (details are
available upon request). The dashed line is again based on the stylized model, which is parametrized so that the
values of �GG implied by analytical and quantitative model coincide for the mid-point value of �.

In summary, stronger complementarities imply an equilibrium which features firms with

“superstar teams” composed of the best workers, on the one hand, and other firms with “laggard

teams,” on the other hand (cf. Andrews et al., 2019; Autor et al., 2020).43

4 Model Meets Data

In this section, I bring the model to the data, considering a single time period (2010-2017).44 This

process involves four steps. Section 4.1 maps key model objects to matched employer-employee

panel data. Notably, I present a theoretical identification result that guides the quantification of

coworker complementarity specifically. Section 4.2 uses this result to measure complementarities

in the data and discusses estimates. Section 4.3 tests model predictions using cross-sectional

variation (and relying on additional, Portuguese data). Lastly, Section 4.4 calibrates the structural

model, with micro estimates of complementarity serving as a key source of empirical discipline.

43This result underscores the importance of analyzing input complementarities and input choice jointly. Following
Rosen (1981), greater sub-modularity may be associated with a “superstar” phenomenon, as it implies extra weight
on, and hence reward for, the highest-quality input within a production unit of given input composition. The analysis
here underlines that when inputs are chosen endogenously and subject to frictions, stronger super-modularity leads
to some firms matching together the highest-quality inputs available, resulting in greater differences between firms.

44I turn to trends over time in the following Section 5.
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4.1 Mapping model objects to data

For the model to deliver a meaningful, quantitative interpretation of the motivating evidence

in Section 2, we need to take a stand on how theoretical model objects are connected to data.

While straightforward for certain primitives (e.g., job separation rates) and outcomes (e.g., wage

dispersion), measuring others is less straightforward. I next outline how the following objects

are recovered: worker types; firms, teams and coworkers; specialization and complementarity.

4.1.1 Worker types

In the model, a worker’s type G represents their time-invariant productivity (or absolute advan-

tage) type. I adopt two established approaches to empirically approximate this concept.45

The first approach is the AKM-based method introduced in Section 2.2. Worker are ranked by

their fixed effect, which yields an ordinal measure that corresponds to G ∈ [0, 1]. Furthermore,

workers are binned by decile rank, denoted Ĝ8 for worker 8. Binning aligns the empirical with the

numerical analysis of the structural model, which is solved by discretizing the (continuous) type

space using ten equidistant grid points, as well as reducing noise.

While the AKM approach is straightforward and popular, several of the underlying assump-

tions – including the log-linear functional form for wages – are inconsistent with the structural

model (e.g., Eeckhout and Kircher, 2011; Bonhomme et al., 2019). Therefore, I also implement

the non-parametric ranking algorithm proposed in Hagedorn et al. (2017), which imposes weaker

assumptions that are satisfied in the structural model.46 The correlation between the resulting

two rankings is high (0.86). Implementation details are relegated to Appendices B.2.1 I treat the

AKM-based measure as a baseline, following the majority of the literature, and report robustness

checks in Appendix B.4.3.

One concern with either approach is that it any worker in a high-wage occupation will tend

to be interpreted as having high absolute advantage, even if conditional on their occupation they

are not particularly productive. Paralleling the approach taken in Section 2.2, as a robustness

check I also consider an alternative ranking of workers within their respective occupation.

45Throughout, the model is brought to the data using residualized wages, the construction of which was described
in Section 2.1. While residualizing wages for observables aligns with the model’s exclusion of life-cycle and on-the-
job learning effects, it is not straightforward whether worker types should likewise be computed from residualized
wages. In the baseline, I do so to maintain maximum consistency, both internally and with respect to the existing
literature. It could be argued, though, that for the interpretation of the production function it matters, for example,
whether a worker is “good”, not whether they are “good for their age.” See Appendix B.4.7 for a robustness check.

46Appendix A.2.4 derives a Lemma confirming thatF(G |G′) is indeed monotonically increasing in G and, hence,
Hagedorn et al.’s (2017) approach extends to the present environment.
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4.1.2 Firms, teams and coworker(s)

In the dynamic model, workers are sorted into teams with two members, while real-world

production units typically have more than that. To align theory and data, I follow Herkenhoff

et al. (2022) and construct a “representative coworker” type for each empirical worker-year

observation, which yields a counterpart to G′ in the model. This step implicitly interprets the

theoretical notion of teams as actual firms. Though useful for tractability, this represents a

significant simplification, so I discuss the method and robustness checks in some detail.

Worker 8’s representative coworker in year C is constructed as the unweighted leave-out mean

type among employees in the same establishment-year cell. Recalling that (−8C = {: : 9(:C) =
9(8C), : ≠ 8} denotes the set of 8’s coworkers in year C, 9(8C) being the identifier of 8’s period-C

employer, the average type of 8’s coworkers in year C is Ĝ−8C = 1
|(−8C |

∑
:∈(−8C Ĝ: . Aligned with the

discussion in the preceding section, I construct this object based on an economy-wide ranking

of workers, as a baseline, but also consider a within-occupation ranking as a robustness check.

Three potential concerns with this approach relate to the definition of the coworker group;

the averaging step; and firm size. Regarding the first of these, the baseline specification cor-

responds to what Jarosch et al. (2021) refer to as “Team Definition 1”. One could alternatively

argue for including only coworkers in the same occupation. I deliberately do not adopt this

specification, as Corollary 2 implies that coworker complementarities arise precisely when work-

ers are differentiated in their task-specific productivities, which is more likely across varying

occupations contributing to the same output.

A second point involves the non-linearity in coworker aggregation implied by the structural

model, which the equally-weighted average method neglects.47 According to Proposition 1,

lower-type coworkers should have a higher aggregation weight insofar as " > 0. By taking an

unweighted average, the baseline approach thus effectively ignores complementarities across

an individuals’ multiple coworkers (the focus here being on complementarities between that

individual and her coworkers). For instance, having two "middle" level coworkers appears

equivalent to having one "high" and one "low" level coworker. However, robustness checks

using a non-linear averaging method indicate that the resulting bias is minor in magnitude (see

Appendix B.4.1). Intuitively, bias is small because dispersion among coworkers is limited in the

data, which itself is a manifestation of coworker sorting, which the structural model predicts to

be high precisely when the non-linearity in aggregation would be significant. Hence, I adopt the

simpler, linear aggregation method as a baseline, aligned with the existing literature.

A third worry is that the model’s fixed team size could distort the empirical interpretation.

Intuitively, a single colleague’s exit or entry impacts a worker’s productivity (and, hence, wage)

47While aligning with existing studies of coworker interactions (including Cornelissen et al., 2017; Jarosch et al.,
2021; Herkenhoff et al., 2022), this neglect is more concerning here given the distinctive focus on complementarities.
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less in larger teams. The collapsing step is consistent with this intuition: a single move will

induce a smaller change in the average coworker quality in a large team than in a small one.48

Having ranked workers and collapsed multiple coworkers in the data into a representative

coworker, we can link types and matching patterns in model and data. For example, using Ĝ8 and

Ĝ−8C , we can compute direct counterparts to the theoretical measures of labor market sorting

defined in equations (32) and (33).

4.1.3 Specialization and coworker complementarity: a useful identification result

Next, I explain how the specialization parameter " – respectively the elasticity of complementar-

ity �, per Corollary 2 – can be recovered from the micro data. I present and discuss a theoretical

identification result; the empirical implementation and results follow in the next sub-section.

Considering the theoretical model, specifically Section 3.2, and treating each worker’s type as

known for present purposes, how can we measure the degree of coworker complementarity in

production, and specifically
%2 5 (G,G′)
%G%G′ ?49 Except in circumscribed contexts (e.g., Mas and Moretti,

2009; Adhvaryu et al., 2020) we do not have measures of individual output, while firm output

may be affected by many variables other than workforce quality.

The central, and novel, insight underpinning my quantification strategy is that coworker

complementarity in wages is directly proportional to complementarity in production. To see this,

note that using the surplus sharing rule (26) and after some algebra (cf. Appendix A.2.3), we can

write the implied wage of G employed alongside G′ as

F(G |G′) = $
(
5 (G, G′) − 5 (G′)

)
+ (1 − $)�+D(G) − $(1 − $)�E.D

∫
3D(G̃′′)
D

((G̃′′|G′)+3G̃′′.

Intuitively, the worker is rewarded with an $-share of the increase in production from G

being added to G′, plus a fraction of G’s outside option, minus compensation to the firm and its

other employee for their foregone share of a surplus from eventually hiring a different worker.

Differentiating twice with respect to G and G′, respectively, yields:

Corollary 4 (Measuring complementarities in theory). The strength of coworker complementari-

48A distinct issue that is related to firm size concerns the decomposition of the variance of log wages. The empirical
computations are performed in the uncollapsed sample (cf. Section 2.2). In the model, where firm size is two, the
between-component is mechanically overstated; it would be greater than zero even under random matching. This
is simply an outgrowth of the law of large numbers not applying within production units (cf. Carrington and Troske,
1997). Throughout, I report a corrected decomposition, using a method explained in Appendix C.1.3.

49The cross-partial is very intuitively connected to the ‘strength of supermodularity’, measuring how much the
marginal productivity of one worker’s talent changes with a change in a coworker’s talent. It is also direct determinant
of the elasticity of complementarity. Considering equation (16), observe that � = ( 5 58 9)/( 58 59) for any 8 ≠ 9, where
subscripts indicate partial derivatives. This observation goes back, in fact, to Hicks (1932, 241-246).
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ties in production is proportional to the strength of coworker complementarities in wages:

%2 5 (G, G′)
%G%G′

=
1

$
%2F(G |G′)
%G%G′

. (37)

The intuition is as follows. In a situation of bilateral monopoly, as it arises in the presence

of search frictions, a fraction of the surplus accrues to the worker. The level of the wage is

influenced by the bargaining partners’ respective outside options. When we consider the cross-

partial derivative – focusing on differential wage responsiveness to changes in coworker talent

– these outside options drop out: that of employee G is foregone irrespective of whether she

is matched with a bad or a good coworker; those of the employer and coworker are foregone

irrespective of whether G or someone else is hired.50 The curvature of surplus is shaped by the

production function. If the surplus increases by some incrementΔ, the worker G appropriates a

fraction $ of thatΔ-increase, and the magnitude of the associated wage change is informative

about output changes due to the interaction between G and G′.

Corollary 4 indicates that we can use measurements of %2F(G |G′)
%G%G′ to quantitatively discipline

%2 5 (G,G′)
%G%G′ ; " will then be indirectly recovered using the model’s full structure.51 One attractive

feature of this approach is that this moment can straightforwardly be estimated for different

periods, enabling a quantitative analysis of trends over time, as well as occupations or industries,

facilitating tests of model mechanisms in the cross-section.52

4.2 Coworker complementarity in the data

This section empirically quantifies coworker complementarity.

50This argument extends to a setting with on-the-job search (OJS), where a worker’s outside option in negotiation
with a “poaching” employer may be tied to the surplus obtained with the current employer, as opposed to the value
of unemployment. Appendix C.2.2 elaborates on the OJS case.

51 A different avenue is to directly measure the within-worker dispersion in productivity across tasks – consistent
with the idea that complementarity is a reduced-form object and ultimately pinned down by specialization. As
argued in Section 2.3, however, cardinal measures of specialization are extremely rate, especially longitudinal ones
covering the economy as a whole. Alternatively, one may wish to consider a model version that features two types of
tasks, one associated with a low value of " (“routine”) and the other with a high value of " (“complex”). Rising task
complexity, as in Figure 2a, would then be represented by an increase in the share of the latter type, leading to a rise
in the ‘average’ ". Unfortunately, analytical tractability is lost with two types of tasks. Numerically, I have verified
that the maximum likelihood estimate of the " parameter of a univariate Fréchet when fitted to data generated from
a mixture of a low-" and a high-" Fréchet is increasing in the weight of the latter. To further pursue this approach,
though, one would require estimates of the (cardinal) " values associated with routine and complex tasks.

52One limitation of Corollary 4 that ought to be kept in mind is that the mapping between wage and production
complementarities is contingent on a particular value of the bargaining power parameter $. I will externally
calibrate $ and treat it as time-invariant going forward. Foreshadowing the discussion of time trends in Section 5, if
workers’ bargaining has declined over recent decades, however, as some studies argue is the case at least for the U.S.
and France (Stansbury and Summers, 2020; Mengano, 2023), then any increase in wage complementarities would
understate rising production complementarities.
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METHODOLOGY. Conceptually, to measure how the slope of the wage function with respect to

the coworker type varies with the own type, worker and coworker type measures are combined

with the joint wage distribution. Practically, two routes are available. One is to construct a

non-parametric wage function and compute the average cross-partial derivative using finite-

difference methods (see Appendix B.2.2). This method is straightforward and imposes minimal

assumptions on the shape of the wage function. A concern is that threats to identification are

ignored that stem from features of the data that are absent from the theoretical model.53

An alternative method is regression based. It imposes more structure but allows addressing

identification concerns more transparently. Specifically, I estimate

F8C

F̄C
= �0 + �G Ĝ8 + �G′ Ĝ−8C + �2 (Ĝ8 × Ĝ−8C) + # 9(8C) + �>(8)C + �B(8)C + &8C , (38)

using OLS, where # 9(8C) denotes employer fixed effects (FE), �>(8)C are occupation-year FEs, �B(8)C
are industry-year FEs.54 Weighting each observation by the inverse empirical frequency of the

associated (Ĝ8 , Ĝ−8C) match ensures equal exploration of each part of the state space, including

those under-sampled in equilibrium. If the true data-generating process for wages follows

equation (38), then �2 measures the coworker wage complementarities of interest; differentiating

the wage with respect to Ĝ8 and Ĝ−8C yields �2 . Thus, the coefficient of interest, �2 , answers the

following question: How does the effect of having a better coworker vary with your own type?

As Ĝ is treated as continuous for estimation, �2 specifically indicates how much more the wage

of an individual 8 rises, as a percentage of the average wage F̄C , with a one-decile increase in

coworker talent compared to an individual 8′ whose rank is one decile lower than that of 8.

This regression method builds on the peer effects literature and existing analyses of coworker

wage effects in three respects.55 First, identifying variation comes from both “movers” (changes

in coworker quality for individuals who switch employer) and “stayers” (changes in coworker

quality induced by other employees joining or leaving the coworker group). Second, to sidestep

the reflection problem (Manski, 1993), I use a pre-determined measure of coworker quality to

isolate “exogenous peer effects,” rather than estimating types and coworker effects in one step.

Third, a rich set of fixed effects controls for unobserved time-invariant employer heterogeneity

and shocks at the occupation-year or industry-year level. Controlling for the worker’s own type

furthermore accounts for selection of high types into coworker groups with a high average type.

Different from the usual peer effects literature, though, the objective here is to capture

53Appendix B.2.2 shows that both the non-parametric and the regression-based method are capable of approxi-
mating the true average cross-partial well when applied to data generated from the structural model.

54I also include squared terms in Ĝ8 and Ĝ−8C to address the concern that the interaction term picks up convexity
in the return to own or coworker talent. Equation (38) omits these terms for sake of readability.

55For example, Cornelissen et al. (2017); Barth et al. (2018); Cardoso et al. (2018); Hong and Lattanzio (2022).
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coworker wage complementarity, not simply wage effects. In regression (38), this is manifested in

two ways. First, the focal point is the interaction term – and thus heterogeneity in coworker effects

– contrary to peer-effect studies that usually target an average treatment effect.56 Second, the

dependent variable is the wage level (scaled by the average wage to aid interpretation and com-

parability), rather than the log wage.57 This choice is significant as theory links complementarity

(i.e., supermodularity) and sorting. If having a better coworker confers a positive but uniform to

any individual, then this creates no incentive for positively assortative matching. What drives

positive sorting is a differentially greater benefit from greater coworker quality for high types.

Moreover, it is the absolute gain that matters, not the gain relative to one’s own wage.58

RESULTS. Table 2 reports the estimates of �2 for the sample period 2010-2017 and under a

variety of specifications. In column (1), no fixed effects are included; column (2) introduces

employer FEs, absorbing variation due to time-invariant differences in pay-levels across different

firms; and column (3) adds industry-year and occupation-year FEs, controlling for time-varying

shocks at the industry- or occupation level that correlate with coworker types and wages. One

can observe, however, that these additional controls turn out have only a limited influence on

the magnitude of the point estimate of �2 .

Treating column (3) – which corresponds to the specification in equation (38) – as the baseline,

we find that the point estimate of the coefficient �2 on the interaction term of interest is equal to

0.0091, which is statistically significant at the 1% level. (The non-parametric, finite-difference

based method yields a very similar estimate, equal to 0.0097.) To provide a sense of magnitude,

this implies that the wage increase from a one decile improvement in the average coworker

quality is 4.55% greater, as a percentage of the average wage, for a worker who is in the top decile

compared to one in the fifth decile (0.0091·(10-5)·1=0.0455).

This finding is robust to the worry that �̂2 may be biased because the worker and coworker

type measures appearing on the right-hand side of equation (38) are ultimately still recovered

from wages, including the contemporaneous wage used here as the dependent variable. I

address this concern with two different checks. First, Appendix B.4.5 considers education as

a non-wage measure of worker types. In a regression of wages on fully interacted years of

schooling and coworker schooling, the coefficient on the interaction term likewise indicates that

56Relative to the literature on coworker learning (Jarosch et al., 2021; Herkenhoff et al., 2022), there is an ad-
ditional, salient difference: rather than considering the dynamic influence of coworkers, here I concentrate on
contemporaneous spillovers.

57A common peer effect specification where the dependent variable is in logs imposes a constant (semi)-elasticity.
If having better colleagues is beneficial, this is true for all types, with the absolute gain constrained to be greater for
high types.

58For example, consider a situation with low and high types. Under matching pairings of (low, low) each produces
1, while under (high, high) each produces 10, while (low, high) yields 3 and 5. Here, the absolute gain from a
high-type coworker is greater for the high type, even though the proportional gain is be larger for the low type.
Production is maximized under PAM with an output equal to 22, compared to 16 under mixing.
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(1) (2) (3) (4)

�̂2 0.0095*** 0.0094*** 0.0091*** 0.0058***
(0.00051) (0.00039) (0.00035) (0.00278)

Own type controls Yes Yes Yes Yes
Coworker type controls Yes Yes Yes Yes
Employer FEs No Yes Yes Yes
Industry-year FEs No No Yes Yes
Occupation-year FEs No No Yes Yes
Type ranking Economy Economy Economy Occupation
Obs. (1000s) 4,410 4,410 4,410 4,410
Adj. '2 0.736 0.803 0.811 0.800

Table 2: Regression evidence on coworker complementarity (2010-2017)

Notes. Regression results based on equation (38), reporting the estimates of the coefficient on the interaction term,
�̂2 . The dependent variable is the (residualized) wage, in levels and divided by the year-specific average wage. All
regressions include a constant. “Own type controls” and “Coworker type controls” are quadratics in Ĝ8 and Ĝ−8C .
Employer-clustered standard errors are given in parentheses. Observations are weighted by the inverse employment
share of the respective type and (rounded) coworker type cell. Observation count rounded to 1000s. * p<0.1; **
p<0.05; *** p<0.01.

complementarity is positive (this is true not only for 2010-2017 but for the entire sample). Second,

I re-run regression (38) using worker and coworker types constructed from lagged periods, which

rules out endogeneity due simultaneity. This approach, too, yields comparable results, with

details reported in Appendix B.4.6.

A distinct concern is that there is insufficient idiosyncratic variation in coworker quality to

credibly identify complementarities, especially in larger establishments. Through the lens of the

structural model, such variation naturally occurs due to search frictions, but it could be argued

that for sufficiently large coworker group sizes, this idiosyncratic variation washes out when

constructing an average coworker type. Appendix B.4.8 discusses this concern in greater detail,

and it shows that the findings are robust to considering a subset of smaller establishments.

Finally, column (4) indicates that strength of complementarities when workers are ranked

within occupation rather than economy-wide. Under this alternative specification, �̂2 is equal to

0.0058, suggesting that part of the baseline coworker complementarity estimate may reflect a di-

mension of worker and coworker quality that is picked up by occupational choice. I quantitatively

evaluate this alternative mapping between model types and data in Section 5.4.

4.3 Validation of model mechanisms in the cross-section

Prior to quantifying the model, I use cross-sectional variation to scrutinize two central, model-

predicted relationships: that coworker complementarities are stronger when specialization is
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more marked; and that complementarities promote positively assortative coworker matching.

For these analyses, I supplement the SIEED data with a second micro dataset, the Portuguese

Quadros de Pessoal/Relatório Único (QP) matched employer-employee panel. All results re-

ported for Portugal are drawn from joint work with Criscuolo and Gal (Criscuolo et al., 2023).59

While the SIEED could also be used here, there are non-trivial limitations for present purposes,

notably a loss of statistical power when parsing the data more granularly and top-coding of

wages.60 The QP, meanwhile, is an annual mandatory census of all employers in Portugal and

wages are not top-coded (see Appendix B.1.2 for a more detailed description). I again use the

2010-2017 subsample, which also includes standardized ISCO occupation codes and detailed,

NAICS 4-digit industry codes. I examine variation across occupations and industries, while

acknowledging two caveats. First, the analysis establishes correlations that are consistent with

the structural model but cannot speak to causality. Second, as the model does not explicitly

incorporate occupations or industries, each data cell is effectively interpreted as a separate

instantiation of the model.

OCCUPATIONS. I begin by analyzing tasks, complementarities, and sorting at the occupation

level. Each ISCO-08 2-digit occupation is classified by its reliance on complex (i.e., non-routine,

abstract) tasks, relying on task indices from Mihaylov and Tijdens (2019).61 Sorting and com-

plementarity measures are then constructed for each occupation. For these measures to be

independent across occupations, I use the within-occupation ranking of workers and, addition-

ally, restrict the set of coworkers to those in the same employer-occupation-year cell (“Team

definition 2” in Jarosch et al. (2021)). Coworker complementarity is computed by estimating

regression (38) separately for each occupation.

The left-hand panel in Figure 5 plots the estimated, occupation-specific estimate of coworker

wage complementarity against the NRA score. We observe a positive relationship, consistent

with the theory. The estimated interaction coefficient is close to zero for those occupations

with the lowest NRA score, whereas it is above 0.02 in occupations that primarily perform non-

routine abstract tasks. Next, the right panel shows that workers in occupations featuring greater

complementarity are also matched together in a more positively assortative pattern.

These findings are also consistent with previous literature studying broadly related phenom-

59I thank Chiara Criscuolo and Peter Gal, and the OECD’s Directorate for Science, Technology, and Innovation
(STI) more broadly, for facilitating these analyses and the usage of the results in this paper.

60Why not use Portugal as the primary data source? One reason is that I want to connect my analyses to previous
results in the literature, which have often treated Germany, the largest European economy, as a reference case.
Portugal has, furthermore, experienced several idiosyncratic macroeconomic shocks over the past three decades.

61Mihaylov and Tijdens’s (2019) index attractive, as it is constructed from occupation-specific lists of tasks provided
by ISCO-08. Therefore, no selection among many alternative task scales is involved, which can be controversial,
as discussed by Acemoglu and Autor (2011). Moreover, the ISCO-08 codes are consistent with the Portuguese
classification for the years in question, whereas the task complexity measure discussed in Section 2.3 is based on a
Germany-specific classification, which is difficult to map to ISCO codes.
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(a) Tasks and complementarities
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(b) Complementarities and sorting

Figure 5: Occupation-level relationships between tasks, complementarities, and coworker sorting

Notes. The left panel plots, for each ISCO-08 2-digit occupation, the occupation-specific point estimate for the coef-
ficient on the interaction term, �2 – obtained from regression (38) when estimated separately for each occupation
– against the non-routine task intensity of that occupation. The right panel plots the occupation-level coworker
correlation coefficient, i.e., the correlation between a worker’s type and the average coworker type against �2 , which
is now shown on the horizontal axis. The linear regression line is fitted based on unweighted observations.

ena. Neffke (2019) studies Swedish micro data and finds that coworker effects are important in

many knowledge-intensive jobs (e.g., health care, engineering) and professional occupations

(e.g., lawyers); and in skill-intensive (e.g., R&D) an crafts-based industries (e.g., construction).

Jäger and Heining (2022) find that when a high-skilled or specialized worker dies, their coworkers

in other occupations experience wage decreases.62

INDUSTRIES. Turning to an industry-level analysis, I classify each 4-digit NACE industry

according to a proxy for complementarity proposed by Bombardini et al. (2012). The basic idea

is that an industry is more likely to feature complementarity if many workers are in occupations

for which the following four characteristics are important: teamwork, impact on coworker

output, communication, and contact. I operationalize this measure using O*NET data alongside

industry-level occupational employment weights from QP.63 Similar to the approach adopted for

occupations, I also compute coworker complementarity and sorting separately for each industry.

The results cohere with the model’s predictions. The binscatter plots in Figure 6 shows that

the higher an industry scores on the proxy measure, the greater tends to be the estimated value

of complementarity, which in turn is positively associated with coworker sorting. Appendix

B.4.2 furthermore shows that measures of between-firm inequality in productivity and wages are

62Appendix B.4.2 provides supplementary evidence using variation across seven different, vertical layers of the
firm, grouped by similarity in the complexity of tasks and skills required, in the spirit of Caliendo et al. (2020).

63Clearly, we could characterize industries also on the basis of occupational task indices, as considered before. I
adopt Bombardini et al.’s (2012) approach as a baseline in order to test the theory against a variety of proxies for ",
including ones used in the extant literature for related purposes.
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Figure 6: Industry-level relationships between tasks, complementarities, and coworker sorting

Notes. The left panel depicts a binscatter plot of the point estimate for the coefficient on the interaction term, �2 ,
estimated at the industry-level, against an industry-level proxy for complementarity. This proxy is constructed from
O*NET data following Bombardini et al. (2012). The right panel is an industry-level binscatter plot of the coworker
correlation coefficient against �2 , which is now shown on the horizontal axis. The underlying unit of observation
is a 4-digit NACE industry, with at least 5,000 person-year observations and where the industry-level proxy for
complementarity is within two standard deviations of the mean. Observations are grouped into 30 bins. The linear
regression line is fitted based on unweighted observations and calculated prior to binning.

increasing in the degree of coworker sorting.64

In summary, cross-sectional variation corroborates the model’s core mechanisms.

4.4 Model calibration & quantitative validation

I now turn to the calibration of the quantitative model. I start by describing how structural

parameters are disciplined through a combination of micro- and macro-moments, including the

complementarity estimates obtained in Section 4.2. I then discuss the estimation results.

I emphasize that in this approach, the key distributional moments of interest – the degree of

coworker sorting and the between-firm share of wage inequality – are left untargeted. Instead,

the point estimates of coworker wage complementarity at the micro-level serve to discipline

the elasticity of complementarity, �, and thus indirectly the specialization parameter ". The

macro-distributional moments then serve as yardsticks to assess the model’s performance to

explain within- and between-firm heterogeneity in workforce quality composition and pay.

64Reassuringly, the relationship between coworker sorting and the between-firm wage of the variance of log wages
is almost linear with a slope equal to one. That is, the industries with the highest measure of coworker sorting
(a correlation of around 0.55) have, on average, a between-firm share of the variance of log wages equal to 0.55;
industries featuring a coworker sorting coefficient around 0.15 have a between-share of close to 0.15.
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4.4.1 Methodology

Four parameters are externally calibrated, the job separation rate is set to directly target an

empirical moment, the remaining five are estimated by indirect inference. I set a unit interval of

time to be one month, and since the model is solved in continuous time I can construct correctly

time-aggregated measures at any desired frequency.65 Empirical moments are constructed as

averages across the years 2010-2017.

DISTRIBUTIONAL AND FUNCTIONAL FORM ASSUMPTIONS. The functional form of the produc-

tion function is directly informed by the microfoundations set out in Section 3.1. For quantitative

purposes, I introduce two generalizations. First, I introduce a constant factor, 00, such that

even the lowest-ranked employee produces a strictly positive amount of output. Including 00

is motivated by the observation that in the model even the least productive worker searches

for employment, which is likely not true in the data, where those individuals would be out of

the labor force. One can interpret the intercept term 00 as standing in for this selection margin.

Hence, a firm with a single worker G produces 5 (G) = 00+ 01G. Second, the degree to which labor

productivity is greater when working in teams than working alone is controlled by a parameter

02, so that team output is66

5 (G, G′) = 202
[
00 + 01

(1
2
(G)1−� + 1

2
(G′)1−�

) 1
1−�

]
.

Next, the flow value of unemployment is proportional to output produced alone, 1(G) = 1̄× 5 (G).
PRESET SET PARAMETERS OR ESTIMATED OFFLINE. The following three parameters are exter-

nally calibrated. Regarding preferences and bargaining, I follow Herkenhoff et al. (2022). The

discount rate � is set to 0.008, consistent with an annual interest rate of 10%. Such a high rate

is common in this type of model. A high discount factor effectively proxies for concavity in

the utility function, which tractability requires us to abstract from. The bargaining parameter

$ = 0.50 implies equal sharing of surplus. Third, as explained in Section 3.1, the production

parameter 02 has to be greater than unity, else it would never be beneficial to work in teams, as

complementarities mean that the least-capable team member disproportionately determines

output. I set 02 equal to 1.1, though the exact value turns out not to be crucial.67

The exogenous separation rate, �, can be directly chosen to target the empirically monthly

65For example, if the empirical average probability that an employed worker loses their job during a month is 3,
then I recover the Poisson rate � at which such a shock arrives as 3 = 1 − 4−�.

66I have experimented with a specification that allows 02 to endogenously vary with ", as implied by Proposition
1. However, as the returns to scale are decreasing in team size, the assumption that teams are of maximum size two
which was made for tractability reasons, could lead to an overstatement of this benefit. I therefore opt to instead
treat 02 as exogenous in order to cleanly isolate the effect of " via complementarities.

67This means that the average labor productivity in a team with two workers G and G′ is 10% greater than that of a
worker producing alone if that worker’s rank equalled the "-weighted power mean of G and G′.
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Parameter Description Value Source

� Discount rate 0.008 External
$ Worker bargaining weight 0.50 External
02 Team benefit 1.1 External
� Separation rate 0.0085 Offline estimation
� Elasticity of complementarity 0.837 Internal estimation
00 Production constant 0.239 Internal estimation
01 Production quality scale 1.557 Internal estimation
11 Unemployment flow scale 0.664 Internal estimation
�D Meeting rate 0.230 Internal estimation

Table 3: Model parameters - baseline (2010-2017)

Notes. This table summarizes the calibration of the model for the period 2010-2017. Parameter estimates are
expressed at a monthly frequency, when applicable. Note that � = "

1+" given Corollary 2.

job losing rate, which across 2010-2017 equals 0.0085 on average. The latter moment is computed

by supplementing the SIEED with the Linked Employer Employee Data (LIAB), which unlike the

SIEED contains information on non-employment spells (see Appendix C.1.1).

INTERNALLY ESTIMATED PARAMETERS. The remaining five parameters, collected in # =

{", 00, 01, 1̄ ,�D}, are estimated using standard indirect inference methods by matching mo-

ments. The estimated values of these parameters minimize the objective function

G(#) =
5∑
9=1

(
<̂ 9 − < 9(#)

1
2 |<̂ 9 | + 1

2 |< 9(#)|

)2
,

where <̂ 9 refers to the empirical moment and < 9(#) denotes its model counterpart.

Before describing the moments used, two comments are in order. First, the model moments

are obtained from the numerically computed stationary equilibrium, found using a fixed point

algorithm after discretizing worker types into ten equally spaced grid points. For example, the

variance of log wages is recovered using equation (35). Second, while the parameters in # are

jointly estimated, each is closely informed by one of these moments, as explained next. To

validate my approach, and following Bilal et al. (2022), Appendix C.1.2 conducts two exercises

that jointly support the notion that the vector # and each of its elements are well-identified.

The most important moment is the coworker wage complementarity, which following Corol-

lary 4 directly informs the strength of production complementarity. I estimate an analogous

regression to equation (38) inside the model and target the empirically estimated point estimate

of the interaction coefficient �2 , which for 2010-2017 is equal to 0.0091 (see column (3) of Table

2). Next, the values of 00 and 01 are guided, respectively, by the average wage, which I normalize
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to unity, and the total variance of log wages, which is equal to 0.241. Note that both parameters

raise the average wage but the dispersion of wages is decreasing in 00 yet increasing in 01. The

parameter 11 is informed by the ratio at which the flow value of unemployment replaces the

(type-specific) average wage. Based on official administrative replacement rates in Germany and

recent work by Koenig et al. (2021) that also accounts for non-monetary opportunity costs of

employment, I target a ratio of 0.63. This value is somewhat lower than the replacement rate used

by Jarosch (2023), for instance, since my calibration targets moments after the Hartz reforms

of the labor market undertaken in the early to mid-2000s, which reduced the generosity of the

unemployment insurance system. Finally, �D targets a monthly job finding rate of unemployed

workers equal to 16.2%, again computed from the LIAB.68

4.4.2 Results

Table 3 summarizes the baseline parameterization of the model, including the internally esti-

mated parameters. Table 4 summarizes the model fit. It indicates that the model is capable of

matching the targeted moments perfectly, # being exact-identified.

The key parameter � is inferred to be 0.84, corresponding to " equal to 5.15.69 To aid

interpretation, consider four individuals, two at the 20th and two at the 80th percentile of the type

distribution. In the calibrated model, two teams under perfect assortative matching (“high-high”

and “low-low”) produce 19% more output than the same types in mixed teams.

I now turn to an evaluation of the model in terms of untargeted moments. In terms of

matching patterns, the theoretical coworker correlation indicates substantial, positive coworker

sorting, at a magnitude only slightly below what is observed in the data (0.53 vs. 0.62). Noting that

the only moment which informs the degree of coworker sorting in the estimation is the micro

estimate of coworker wage complementarity, I view this as a success for the model. Providing

a more disaggregated picture, Figure 7 plots, for each type, the decile of the average coworker

type, according to both model and data. The model successfully replicates the upward slope, but

slightly underestimates the quality of coworkers at both bottom and top. Section 5.4 will show

that incorporating on-the-job search improves the model fit in this respect.

What about between- and within-firm wage inequality, the key untargeted moment(s) of

68This value is higher than that reported by, e.g., Jarosch (2023). This is unsurprising, as I compute moments in
matched employer-employee data rather than a sample representative of both the employed and the non-employed.
As the other moments likewise derive from employer-employee data, the estimation is internally consistent.

69Recurring to Footnote 51, which discussed an alternative calibration strategy using direct measurements of
", I have experimented with fitting a (truncated) Fréchet to Grigsby’s (2023) non-parametric estimates of the
multi-dimensional skill distribution estimated from CPS data for the U.S. in the 2000s. With the caveat that adopting
this approach leads to extremely noisy estimates of ", that the data are for a different country, and that the concept
of task-specific skills is coarser than may be appropriate for present purposes, it is reassuring that the recovered
value of " is in the same ballpark as recovered using my baseline calibration strategy.
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2010-2017 1985-1992

Parameter Targeted moment Value < <̂ Value < <̂

� �̂2 0.837 0.0091 0.0091 0.434 0.0035 0.0035
00 Avg. wage (norm.) 0.239 1 1 0.378 1 1
01 Var. log wage 1.557 0.241 0.241 1.216 0.143 0.143
11 Replacement rate 0.664 0.63 0.63 0.740 0.69 0.69
�D Job finding rate 0.230 0.162 0.162 0.168 0.141 0.141
� Job loss rate 0.008 0.008 0.008 0.007 0.007 0.007

Table 4: Estimated parameters and targeted moments

Notes. This table lists for each of the estimated parameters, the targeted moment, the estimated value, and moment
values in data (<̂) and model (<). Each is shown separately for the years 2010-2017 and 1985-1992. The calibration
for the latter sample period is discussed in Section 5.2.1. Parameter estimates are expressed at a monthly frequency,
when applicable. Note that � = "

1+" given Corollary 2.
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Figure 7: Average coworker type by worker type: model vs. data

Notes. This figure plots, for each type, the average coworker type, in both model and data. The data plot is for the
year 2017, repeated from Figure 1b but using ten bins for comparability to the model. The theoretical counterpart is
computed using equation (33).
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interest? In the next section, we dissect the model-implied decomposition of wage dispersion

into between- and within-firm components. In brief, this analysis reveals that the stationary

equilibrium of the theoretical model fits the data very well along this dimension. That is despite

assuming that there is no permanent, ex-ante heterogeneity across firms. Insofar as there

are differences across firms in the stationary equilibrium, they emerge purely due to ex-post

heterogeneity in firms’ workforce composition; they do not reflect any intrinsic feature of firms.

The quantitative model also generates substantial ex-post dispersion in firm productivity. As

a reference point in terms of broad magnitudes, Syverson (2004) reports an average 90:10 labor

productivity ratio of 4:1. The model-implied counterpart is 3.14:1, going quite some way toward

the data even without assuming ex-ante heterogeneity among firms.

As an additional validation exercise, in Appendix C.2.4 I empirically test the prediction of the

model when extended to allow for on-the-job search (and re-calibrated accordingly). In the data,

job-to-job transitions reallocate workers from less to more positively assortative matches, which

is consistent with the theoretical model in the presence of complementarities.

Overall, the model’s predictions are not only qualitatively born out in the cross-section; the

calibrated version also quantitatively reproduces key features of the German economy in the

2010s quite well, in spite of its parsimonious structure.

5 Model-based Analysis of Trends Over Time

I now proceed to the main exercises in the paper, combining theory and micro data to examine

the evolution of labor market inequality over time. Section 5.1 empirically assesses the model’s

prediction that the rise in specialization, outlined in Section 2.3, implies a strengthening of

complementarities. Section 5.2 uses the time-series data on complementaries together with the

structural model to examine trends in talent sorting and wage dispersion. Section 5.3 explores

the implications of these trends for allocative efficiency. Section 5.4 offers a discussion and

presents robustness checks and extensions.

5.1 The empirical evolution of coworker complementarity

A central trend motivating this paper is the intensification of specialization since the mid-

1980s. Based on this trend, Proposition 1 predicts a strengthening of coworker complementarity:

the gains from better coworkers should have become differentially greater for more talented

individuals. The empirical strategy for measuring these complementarities, outlined in Section

4.2, allows for a test of this prediction.

To investigate this, I separately estimate equation (38) for five sample periods. Figure 8
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Figure 8: Coworker complementarity has increased alongside task complexity

Notes. This figure reports the point estimate and confidence intervals for the coefficient �2 in regression (38),
separately for five sample periods. Standard errors are clustered at the employer level. In addition, the circles
reproduce the share of complex tasks in workers’ activities from Figure 2a. The years of the survey waves and
the sample split in the matched employer-employee data do not align perfectly, so the task measures are placed
approximately at the mid-points of the closest sample period.

displays the resulting point estimate for the strength of complementarity – that is, the interaction

coefficient, �̂2 – alongside 95% confidence intervals. The task-complexity proxy for specialization,

described in Section 2.3, is also overlaid and represented as circles.

This analysis reveals that coworker complementarity has indeed strengthened over time.

Specifically, �̂2 more than doubled between the years 1985-1992 and 2010-2017, rising from

0.0036 to 0.0091. The estimate of coworker complementarity and the task-complexity for "

co-move closely, providing suggestive evidence in support of the model’s predictions.

This finding is robust to several checks, which were introduced in Section 4.2. Appendix B.4.4

provides estimates for complementarity when workers are ranked within occupation. Under this

specification, the strength of complementarities is lower across all periods, but shows a similar

proportionate increase, with �̂2 rising from 0.0022 to 0.0058. Similar patterns emerge also when

worker types are (i) measured by years of schooling, as a non-wage based measure of worker

quality; (ii) recovered non-parametrically using the ranking algorithm of Hagedorn et al. (2017);

or (iii) estimated from information on past wages.

5.2 A model-based perspective on the “firming up” of inequality

As a first step toward assessing the model’s predictions for the macroeconomic impact of strength-

ening complementarities, I re-calibrate the model for the period 1985-1992.
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Figure 9: Decomposition of the variance of log wages: model vs. data

Notes. The solid lines indicate the model-predicted variance of log wages, decomposed into between- and within-
employer components and computed using equations (35) and (36). The model-generated between-within decom-
position is corrected for a mechanical bias, as described in Appendix C.1.3. The semi-transparent lines reflect the
data moments, computed from the same residualized wages as used in the calibration of the model.

5.2.1 Model calibration for 1985-1992

Using the time-series evidence on coworker complementarities, I re-estimate the vector of

parameter # and the separation rate by targeting the same empirical moments as for 2010-2017

but measured over the years 1985-1992.

Regarding the targeted moments for 1985-1992, two aspects warrant comments. First, con-

sidering the replacement rate, I summarize the multiple dimensions of the Hartz reforms as a

reduction of the monetary replacement rate by around 10%, similar to Jung et al. (2023). This

implies a target equal to 0.72. Second, to gauge the impact of changes in search frictions on the

evolution of sorting, labor market transition rates are re-estimated for 1985-1992 as well.

The final main column in Table 4 presents the estimated parameter values. The elasticity of

complementarity is lower than the estimate obtained for the 2010s (0.43 vs. 0.84). In addition,

the uptick in 01 and the dip in 00 over time are consistent with technological change that made

output more sensitive to talent. Increases over time in both job arrival and job separation rates

may signal the emergence of online job portals (Bhuller et al., 2023).

With the model calibrated for two time spans, we can assess its predictions for the evolution

of labor market sorting and firm-level wage inequality. This sets the stage to quantify the role of

amplified coworker complementarities to the “firming up” of inequality in Germany.
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Δmodel Implied % Δmodel due to Δ parameter

Model 1: baseline 0.159 -
Cf. a: fix period-1 complementarity 0.065 59.23
Cf. b: fix period-1 search frictions 0.150 5.88
Model 2: within-occ. ranking 0.198 -
Cf. a: fix period-1 complementarity 0.076 61.47
Cf. b: fix period-1 search frictions 0.189 4.43
Model 3: OJS 0.096 -
Cf. a: OJS, fix period-1 complementarity 0.067 30.54
Cf. b: OJS, fix period-1 search frictions 0.067 30.45

Table 5: Counterfactuals: explaining the rise in the between-firm share of wage inequality

Notes. This table summarizes the counterfactual (“Cf.”) exercises evaluating changes in the between-firm share
of wage inequality. The second column indicates the change in the between-share from 1985-1992 to 2010-2017
for the model specified in the first column. The final column is computed as follows, using the example of “Cf. a:”.

Denoting by < 9 the model-implied between-share, the value is equal to 100 ×
(
1 − <9 (�?1 ,#?2−1)−<9 (#?1)

<9 (#?2)−<9 (#?1)
)
, where �?C is

the value of � estimated for period ?C, C ∈ {1, 2}, and #
?C

−1 collects all other parameters.

5.2.2 Analysis

Figure 9 depicts the model-implied decomposition of the variance of log wages, computed at the

parameters for 1985-1992 and 2010-2017, respectively. The structural model qualitatively repli-

cates the empirically recorded evolution of between- and within-firm inequality. In quantitative

terms – and even though only the total variance of log wages had been targeted – the model

captures 68% of the empirically recorded increase in the between-firm share (+0.159 vs. +0.233).

What portion of the model predicted rise in the between-firm share of wage inequality can

be attributed to stronger coworker complementarities? The answer is not obvious ex-ante since

each of the internally estimated parameters changed, potentially influencing the model-implied

decomposition. The theory implies, for instance, that a higher job arrival rate amplifies sorting, as

workers can accept offers more selectively. Additionally, technological change that amplifies the

return to talent (i.e., an increase in 01) can mechanically lead to greater between-firm inequality,

even holding the distribution of workers constant, provided it exhibits positive sorting: It would

elevate the relative remuneration of high-earning individuals, who cluster together.70

To quantify the contribution of coworker complementarities, I use the structural model to

conduct counterfactual exercises. The question posed is: What would the between-firm share

of the variance of log wages have been in the 2010s had " remained constant at its 1985-1992

level? I then compute the implied difference in the between-share across the factual and the

70Within the AKM-framework, increased return to talent could mechanically magnify both the worker-firm sorting
and the worker segregation components. Song et al. (2019) attribute 9% and 35%, respectively, of the increase in
worker-firm sorting and worker segregation in the U.S. to these effects.
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counterfactual scenarios.

The model indicates that the increase in coworker complementarity is an important driver of

elevated firm-level wage inequality. Row 2 in Table 5 summarizes the analysis. Absent a rise in

", the model predicts, the between-share would have risen only by 7 percentage points rather

than 15.9. Thus, heightened coworker complementarities can account for about 59% of the

model-predicted rise in the between-firm share of wage inequality, translating into 40% of the

empirically observed change.

Shifts in the production technology represent a more important factor than changes in labor

market ‘search technology’, though both are consequential. I gauge the relative importance

of changed complementarities by comparing their effect to that of the estimated changes in

labor market transition rates. Specifically, I consider the 2010-2017 parametrization except

counterfactually imposing that both job arrival and separation rates, �D and �, had remained

at their 1985-1992 levels. This exercise suggests that their joint increase can explain 6% of the

model-predicted rise in the between-share.71

The pivotal driver of the increased between-firm share of wage inequality in the model is more

positively assortative matching, aligning with the empirical evidence documented in Section

2.2.72 Thus, the coworker correlation coefficient rises from 0.24 to 0.522. In the model, stronger

complementarity signifies that mismatch is more costly. Hence, the market price mechanism

pushes towards greater sorting; the wage that a firm with a less talented employee can offer to a

talented potential hire lies farther below that affordable to a firm with another talented worker,

since the new hire will be considerably more productive when paired with a peer of similar talent.

Figure 10a depicts this shift in sorting in the model. The upward twist in the mapping between

worker type and average coworker type echoes the data patterns presented in Figure 1b: High

types increasingly pair up amongst themselves, as do lower types.

5.3 Coworker complementarities, sorting, and TFP

How does the interaction between specialization, complementarities, and labor market sorting

affect aggregate productivity? While specialization may directly boosts productivity via the

71The limited importance of declining search frictions is consistent with Kantenga and Law’s (2016) study. A
caveat regarding this exercise is that the transition rates are treated as exogenous in the structural model, despite
being plausibly endogenous to technological change. Intuitively, an increase in production complementarities,
by rendering mismatch more costly, itself would incentivize greater search effort. The increase in meeting rates is
consistent with this mechanism, but examining it further is beyond the scope of this paper.

72Although the model does not admit a straightforward decomposition of inequality into prices and distributions
given their complex equilibrium interplay, we can compute total dispersion and the between-firm share from
equations (35) and (36), imposing the wage functionF(G |G′) implied by the 1985-1992 parameterization but the
distribution )(G, G′) associated with 2010-2017. The implied difference from the 1985-1992 between-share accounts
for almost the total change over time. Moreover, it is the change in the conditional coworker distribution, i.e., sorting
patterns, that drives the rise in the between-share, as opposed to composition changes among the employed.
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Figure 10: Model-implied coworker sorting across time

Notes. Both panels plot the average coworker type (vertical axis) for each worker type (horizontal axis), separately
for the period-1 and period-2 parameterization, computed using equation (33). The left panel is computed from the
baseline model, the right panel considers the model extended to incorporate on-the-job search.

division of labor, it also enhances coworker complementarity, making team productivity more

sensitive to the least capable team member’s ability. Therefore, search frictions that generate

within-firm heterogeneity in worker talent (“coworker mismatch”) lower allocative efficiency

more when specialization, and hence complementarity, is strong. This section uses the estimated

model to quantify this mechanism: How large is the deviation from potential output due to

coworker mismatch in the German economy in the 2010s, and how has it changed over time?

To quantify equilibrium mismatch costs, I calculate the difference in average labor productiv-

ity gap between the equilibrium allocation and a counterfactual scenario of perfectly assortative

matching (PAM), which maximizes productivity for any value " > 0. Changes in coworker

mismatch are isolated by holding the marginal distribution of worker types employed in teams

constant. Counterfactual output per worker under PAM is then equal to 1
2

∫
5 (G, G))(G)3G,

where )(G) represents the unconditional density of types in teams.

Eliminating coworker mismatch would raise per capita output by 2.17% in 2010-2017, com-

pared to 1.78% in 1985-1992. This increase in mismatch costs reflects more productivity loss from

inefficient task assignment. A talented worker ends up performing tasks at which she is relatively

unproductive when paired up with a less capable colleague. Deeper specialization amplifies

this inefficiency. Figure 11a illustrates this point by plotting a simple measure of the strength of

production complementarities against ". This measure compares the output produced by two

teams under perfect assortative matching (“high-high” and “low-low”) to the output produced

by the same types under mixing of types (twice “high-low”). Keeping all other parameters fixed,
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(b) The role of labor market frictions

Figure 11: Worker-task specialization, complementarity, and mismatch costs

Notes. This figure depicts the productivity implications of worker-task specialization ("), measured on the horizontal

axis, through coworker complementarity. In the left-hand plot, the vertical axis indicates
5 (G?80 ,G?80)+ 5 (G?20 ,G?20)
5 (G?80 ,G?20)+ 5 (G?80 ,G?20) − 1.

The right hand panel plots, for any value of ", the cost of mismatch as a fraction of productivity under perfect
sorting, under the realized allocation (solid line) and under random sorting (dotted line).

this ratio approximately doubles from 1.09 in 1985-1992 to 1.19 in 2010-2017.

Why have equilibrium coworker mismatch costs not risen to a similar extent? The answer

lies in the rise in coworker sorting, which signifies a diminishing of the gap between factual and

efficient matching distribution. Using the estimated production function and the unconditional

distribution of types in teams for 2010-2017 but applying the 1985-1992 conditional coworker

type distribution, productivity is 2.58% lower than with the actual conditional type distribution

for 2010-2017.73 Thus, the gap between efficient and realized labor productivity would have been

more than twice as large absent the rise in coworker sorting. In short, the model highlights that

widened between-firm gaps in workforce talent and ensuing differences in average pay need not

reflect worsening frictions such as product market power.74 Here, they are equilibrium outcomes

that limit productivity losses due to greater complementarity, in effect keeping the economy

closer to the productivity frontier.

The model indicates that a labor market which efficiently allocates workers of heterogeneous

quality into teams becomes more critical for the economy to perform at its productive potential

73Counterfactual average output per worker is 1
2

∫
5 (G, G′)3Φ?1(G′ |G)3Φ?2(G). This approach avoids confounding

changes in the unconditional distribution of types with shifts in conditional matching patterns.
74The model does not incorporate product market power – on which see Deb et al. (2022) – nor other features

that render increased between-firm wage inequality inefficient. The model shows, though, that such features are
not necessarily required to explain the empirically observed trends. Hence, any policy response needs to carefully
evaluate the underlying mechanism(s).
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Figure 12: Increasing firm-level labor productivity dispersion in the model

Notes. This figure plots the cumulative distribution of labor productivity implied by the calibrated model(s).

as specialization intensifies. Figure 11b illustrates this relationship by plotting the percentage

gap between realized and efficient allocation in terms of labor productivity against varying

levels of ". The solid line indicates the gap under the baseline parameterization, where all

parameters other than " are kept at their 2010s levels. Consistent with the preceding analysis,

this gap widens only marginally for higher values of ". In contrast, the dotted line indicates

the gap under a random allocation into teams, that is, when the joint distribution is simply the

product of the marginals. Under this scenario, misallocation costs escalate more rapidly since

stronger coworker complementarities induce a greater gap to potential productivity without

the mitigating effect resulting from an endogenous rise in sorting. At the 1985-1992 level of ",

the gap is 3%, compared to 1.78% in the equilibrium allocation. The gap rises to 5.42% at the

2010-2017 level, compared to the baseline value of 2.17%. Simply put, the benefits accruing from

specialization under the division of labor are limited not merely by the extent of the market or

the cost of coordination (Becker and Murphy, 1992), but also by labor market frictions.

5.4 Discussion: robustness & extensions

This section discusses additional moments of interest, robustness exercises and extensions.

PERSON-LEVEL INEQUALITY. While the model is chiefly designed to explain the firm-level

structure of wage inequality, it is instructive to consider how coworker complementarities relate

to individual-level inequality. Perhaps counterintuitively, an increase in " does not necessarily

translate into a higher overall variance of log wages. Although Kremer’s (1993) influential O-ring

theory may lead to the prior that amplified complementarities lead to a “convexification” of

the wage function, this is not the case in the model presented here. Notice first that in Kremer
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(1993) input markets are frictionless and, hence, strictly positive complementarity of any degree

suffices to yield pure PAM in equilibrium; it is not the case that variation in complementaries

influence the wage distribution through changes in labor market sorting. Instead, the predic-

tions in Kremer (1993) relating to a right-skewed earnings distribution critically hinge on the

assumption that production exhibits increasing returns to team quality (cf. Kremer, 1993, Section

III). Here, I deliberately consider the constant-returns case, instead, thus isolating the role of

complementarities. As a result, the wage function is linear in a worker’s own type only if there

are no search frictions, and concave otherwise for " > 0.75

Extensions of the baseline model in several directions could introduce channels through

which stronger complementarities raise overall inequality. One possibility is that fairness con-

cerns (Akerlof and Yellen, 1990) or formal institutions generate within-firm pay compression

for heterogeneous workers. Increased sorting due to complementarity may then weaken the

degree to which these forces dampen overall wage inequality. 76 Second, coworker learning

in interaction with sorting can dynamically foster lifetime inequality (Herkenhoff et al., 2022;

Jarosch et al., 2021). Third, increasing returns to workforce quality, as in Kremer (1993), would

generate a positive relationship between complementarities and person-level inequality.

PRODUCTIVITY DISPERSION. Beyond wage disparities, the model indicates that more pos-

itively assortative labor market sorting also contributed to widening labor productivity gaps

between firms. Illustrating this effect, Figure 12 plots the model-implied cumulative distribution

of labor productivity. The distribution for 2010-2017 exhibits more density at both the lower and

the upper end of the distribution compared to 1985-1992. We can infer, therefore, that increased

coworker complementarities also reinforced firm-level productivity dispersion, consistent with

trends discussed in the firm dynamics literature.77

OUTSOURCING AND WITHIN-OCCUPATION WORKER RANKING. A concern with the baseline

analysis is that the measurement of complementarities and sorting may be confounded by

outsourcing dynamics or related shifts in the boundary of the firm. For instance, Song et al.

(2019, Section V.B.) hypothesize that outsourcing may be a factor behind increased between-

firm inequality. To address this possibility, I consider an alternative specification in which

75Indeed, in the counterfactual scenario with 2010-2017 parameters except lower complementarities the overall
variance of low wages is actually slightly higher than in the baseline. The primary reason is that the increase in
between-firm inequality is offset by a reduction in within-firm inequality. The model-predicted rise in overall wage
dispersion is due to a lower value of 00 and a higher value of 01. In addition, within firms stronger complementarities
reduce the contribution of higher-quality types to joint surplus (cf. Bombardini et al., 2012).

76Beyond pay, Ouimet and Tate (2023) document that the presence of high-wage workers positively predicts
colleagues’ non-wage benefits, likely due to regulations, fairness concerns, or administrative constraints. Comple-
mentarity induced coworker sorting may, thus, also have consequences for unequal access to non-wage benefits.

77While the SIEED is not suited for examining firm-level productivity, evidence from other countries suggests that
rising firm-level wage inequality has indeed been paralleled by a growth in firm-level productivity dispersion. See,
for instance, Decker et al. (2020); Sorkin and Wallskog (2021); De Ridder (2023).
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workers are ranked within-occupation as opposed to economy-wide. An increase in sorting or

complementarities under this specification could not be driven by greater sorting of high- and

low-wage occupations into different establishments. As discussed in Section 5.1, this empirical

specification yields slightly lower values of coworker complementarity in both 1985-1992 and

2010-2017, but the increase is similar to the baseline in proportional terms (see Table B.3).

I re-estimate the model for both periods by targeting coworker complementarity moments

based on within-occupation worker ranking (see Appendix C.2.1), then repeat the counterfactual

exercises. The important role of complementarities remains intact when controlling for changes

in occupational composition across firms in this way, as the second bloc of rows in Table 5

confirms. The increase in complementarity now explains 61% of the model-predicted increase

in the between-employer share of wage inequality, which corresponds to 52% of the empirically

observed rise.

ON-THE-JOB SEARCH. Lastly, I study the implications of on-the-job search (OJS). There are

two main reasons for incorporating OJS. First, E-E transitions represent an empirically salient

feature of the labor market. Second, the relationship between OJS and coworker sorting is

ex-ante ambiguous. On the one hand, when workers receive outside offers while employed,

they will be less discriminating among offers they receive when unemployed, since accepting a

job characterized by low match quality does not imply foregoing future job opportunities with

better match quality. On the other hand, precisely this possibility of on-the-job switching could

enhance coworker sorting.

I model OJS by supposing that at an exogenous Poisson rate �4 , employed workers receive

outside offers from unmatched and one-worker firms. Wages both off and on the job are continu-

ously renegotiated under Nash bargaining, with unemployment serving as the outside option.78

In the estimation, �4 is disciplined by EE rates taken from the matched employer-employee

micro data. These indicate an increase in on-the-job mobility over time: the monthly EE rate is

0.0076 in 1985-1992 and 0.0106 in 2010-2017. Details are relegated to Appendix C.2.2.

The estimated model with OJS generates a profile of coworker sorting that is remarkably

close to what we observe in the data, including in terms of changes over time, as a comparison

of Figures 1b and 10b reveals. Meanwhile, the predicted increase in the between-firm share

over time is smaller, reflecting a higher initial level of between-firm wage inequality. Turning

to counterfactuals, when we repeat the previous exercises using the model with OJS, the rise in

coworker complementarities explains about 30.5% of the overall model-predicted change. This

contribution should be viewed as a lower bound, as Appendix C.2.2 explains.

78This wage specification is motivated by the empirical evidence in Di Addario et al. (2021), who document that
where a worker is hired from tends to be relatively inconsequential for their wages in comparison to where they are
currently employed, contrary to sequential auction models of labor market competition.
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Finally, in both theory and data, EE transitions reinforce positively assortative matching, and

increasingly so over time. In the quantitative model, sorting is stronger with OJS than without

for any given degree of coworker complementarity. Allowing for the possibility of on-the-job

switching toward matches characterized by higher match quality is, thus, more than sufficient

to offset any effect due to more muted sorting out of unemployment. The data confirm that

changes in coworker quality associated with EE moves are positively related to a worker’s own

type, as Appendix C.2.4 verifies. Moreover, this tendency of EE transitions to reinforce positively

assortative matching has strengthened over time, consistent with rising complementarities.

However, the model overstates the positive correlation between own type coworker quality

changes. Future work that incorporates additional determinants of the directionality of job-to-

job moves – including productivity-related considerations but also amenities or idiosyncratic

preferences – could improve the model’s fit to the data.

6 Concluding Remarks

This paper developed, empirically tested, and quantitatively analyzed a model of the firm as

a “team assembly technology.” The model delivers three key insights. First, when production

involves the division of labor among workers with specialized skills – team production – their

talents are naturally complements; the more differentiated workers are in terms of task-specific

skills, the stronger is this complementarity. Second, in labor markets characterized by frictions,

coworker complementarity shapes between- and within-firm heterogeneity in worker talent and

pay, and introduces a wedge between equilibrium and efficient output. Third, complementarities

have strengthened over time, paralleling an increase in specialization, which accounts for a

quantitatively significant part of the “firming up” of wage inequality.

In terms of broader framework development, the paper points in two useful directions.

First, concerning technological change, the theory developed is tractable but encompassing

enough to explore specialization as one dimension along which the nature of work varies across

time and jobs. This points to a richer way of thinking about technological change, as can be

illustrated by considering the example of novel Artificial Intelligence (AI) tools. By diffusing both

codified and tacit knowledge, these tools appear to not only elevate the average productivity of

previously less productive individuals – a leveling effect in terms of absolute advantage – but

also enables individuals to perform unfamiliar tasks, thereby potentially reducing the depth of

specialization.79 Beyond labor markets, this likely carries implications for firm organizations,

management, and product market barriers to entry.

Second, regarding the theory and empirics of firms, the model developed here conceives of

79For early studies, see for instance, Brynjolfsson et al. (2023), Peng et al. (2023) and Noy and Zhang (2023).
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a firm as a collection of heterogeneous individuals, rather than an abstract productivity term

that workers interact with.80 It opens a small window into the black box of firms, shedding

light on the complementarities between heterogeneous coworkers’ talents. However, the model

omits many other important considerations, such as the empirical firm size distribution or

ex-ante firm heterogeneity in dimensions such as product quality. In ongoing work, I explore

these dimensions by integrating heterogeneous firm dynamics, as in Bilal et al. (2022), with

team production. Moreover, inside the firm, the current model assumes perfect division of

labor, ignoring real-world coordination frictions (Becker and Murphy, 1992). Indeed, some firms

appear to be better in coordinating their workforce than others (Coraggio et al., 2022; Kuhn et al.,

2022). An extension of the team production model suggests that this organizational capacity is

a more significant determinant of productivity when specialized skills are important (Freund,

2023). This theoretical conjecture invites empirical and quantitative evaluation.

80In Caicedo et al.’s (2019) pithy formulation: “[...] all knowledge in the economy is held by the individual people
who comprise it: there is no abstract technology hovering above them in the ether.”
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Online Appendices

A Theory

A.1 Team production

The derivations are lengthy but standard in the trade literature (e.g., Allen and Arko, 2019).

A.1.1 Derivation of equation (8)

Start with equation (2), repeated here for convenience:
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,

multiply both sides by �
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Use &(�) = �̃(�)@(�), bring the terms independent of � outside the integral, and cancel expo-
nents. Then ∫

T
&(�)3� = �.. (A.2)

A.1.2 Proof of Lemma 1

PART (I). Step 1 is to derive the distribution of shadow costs of worker 8 providing task �, �8(�).
Since the efficiency draws are independently and identically distributed, the probability of 8
producing that task at a shadow price less than ? is the same for all � ∈ T . Given the definition

�8(?) := Pr{�8(�) ≤ ?}, (A.3)

the properties of the Fréchet distribution together with the FOC w.r.t. ;8(�)
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. (A.4)
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For step 2, consider the probability that a task � ∈ T can be obtained for a shadow cost of
less than ?,

�(?) := Pr{�̃(�) ≤ ?}. (A.7)

Now using
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together with tools in probability, we obtain:
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)
Intuitively, the lowest shadow price is weakly lower than ? unless the shadow price of producing
that task is greater than ? for each worker, so that the distribution �(?) is the complement of the
probability that for every 8 ∈ S the shadow cost of providing the task is greater than ?.

In step 3, substitute for �8(?) using equation (A.6)
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For the final step, consider equation (9), and substitute using equation (A.10):
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Performing the integration by substitution,
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where Γ(·) is the Gamma function, evaluated at the argument 1 + "(1 − �). Convergence of this
integral requires that 1+ "(1− �) > 0. Intuitively, tasks may not be so substitutable that workers’
time is concentrated on tasks that takes them close to zero time to perform, in which case final
good production could be unbounded (cf. Alvarez and Lucas, 2007, Footnote 3). Finally, since

� = Γ(1 + " − �")
1

1−� , we obtain
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as stated in equation (11) in the main text.
PART (II). What is the probability that worker 8 has the lowest shadow cost of providing a task

� ∈ T ? Because productivity draws are iid, and since tasks are on a continuum, by the law of
large numbers this probability will be equal to the fraction of tasks that 8 produces according to
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the optimal plan. Define this share as
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Lastly, we need to show that �8 is not only the fraction of tasks that 8 produces; it is also the
fraction of the value of tasks. Here is a proof, adapted from Allen and Arko (2019). The probability
that the shadow cost of 8 providing a task � is lower than ?̃, conditional on 8 being the least-cost
provider is

Pr

{
�8(�) ≤ ?̃ |�8(�) ≤ min

:∈S\8
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}
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1

�8

∫ ?̃

0

Pr
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}
3�8(?),

were the first term on the right-hand side is the inverse probability that 8 has the lowest shadow
cost of producing a given task, and the second term is the probability that the firm can be
provided with a task at a shadow cost lower than ?̃ by a team member other than 8.
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Then using the same logic as in the derivation of �8 , we find that this is equal to
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which is independent of 8.
Intuitively, the planner makes team members with an absolute advantage provide a greater

range of tasks exactly up to the point where the distribution of shadow costs associated with
producing tasks is the same as the overall distribution of shadow costs.

PART (III). The final result immediately follows since

&8 = �8

( ∫
T
�̃(�)@(�)3�
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∫
T
&(�)3� = �8&.

A.1.3 Proposition 1

When � = 1, then part (i) of Lemma 1 implies that
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∑
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8

) 1
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, (A.11)

Hence, from part (ii) of Lemma 1,

�8 = ((01G8)/�!8 )
1
" .

Next, if H8(�) > 0, then after some straightforward manipulation the FOC w.r.t. ;8(�) reads
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Integrating and using the time constraint (4) implies that∫
T
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Since �̃(�) = �8(�)when H8(�) > 0, this also means that

&8 = �!8 ,

which says that the shadow value of worker 8’s time is equal to the shadow value of all tasks
produced by that worker. Hence, from part (iii) of Lemma 1, and given the normalization � = 1,(

01G8

�!
8

) 1
"

= �!8 /..

Substituting this expression into equation (A.11) and rearranging for. yields
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A.2 Team hiring

A.2.1 Population dynamics

For any type G, the measure of unemployment satisfies

�

(
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∫
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)
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)
.

(A.12)

The measure of exogenously separated workers of any type is equal to the measure of unemployed
workers of that type finding new employment at either one-worker or two-worker firms.

For all G, the measure of one-worker matches follows

3<.1(G)
(
� + �E.D

∫
3D(G̃′)
D

ℎ(G̃′|G)3G̃′
)
= 3D(G)�D

3 5 .0

E
ℎ(G) + �

∫
3<.2(G, G̃′)3G̃′. (A.13)

Outflows from this state occur due to exogenous separation or because the one-worker firm
meets and decides to hire a coworker of some type. Inflows occur when an unemployed worker
of type G meets and gets hired by an unmatched firm or because a two-worker firm that has a
type G as one of its employees loses the coworker.

Finally, for all (G, G′),A.1

2�3<.2(G, G′) = 3D(G)�D
3<.1(G′)

E
ℎ(G |G′) + 3D(G′)�D

3<.1(G)
E

ℎ(G′|G). (A.14)

The economic intuition parallels the aforementioned reasoning.

A.1From an accounting perspective, one of the preceding three equations is redundant given because the adding-up
constraint represented by equation (19) must hold and the distribution of worker types is exogenous. Similarly,
3E(H) can be backed out from equation (20) given 3 5 (H).
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A.2.2 Derivation of surplus equations

A.2.2.1 ((G). We start with the definition of ((G), repeated here for convenience:

((G) = Ω1(G) −+D(G) −+5 .0 (A.15)

Consider equation (31). The term in [·] obviously corresponds to ((G). Rearranging the
surplus sharing equations furthermore implies that(

−Ω1(G) ++4.2(G |G′) ++5 .1(G, G′)
)
= (1 − $)((G′|G)

In words, the joint value of firm and G from being with another worker G′ minus their joint
outside option is equal to (1 − $) of the surplus of adding G′.

Hence, we can write

�Ω1(G) = 51(G) − �((G) + �E.D(1 − $)
∫

3D(G̃′)
D

((G̃′|G)+3G̃′

Substituting this expression into equation (A.15) multiplied by � yields(
� + �
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∫
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D

((G̃′|G)+3G̃′. (A.16)

A.2.2.2 ((G |G′). The first equation we need is a relationship between the surplus and the
total joint value. Start with the definition of ((G |G′), substitute using the sharing rule (22), and
simplify:

((G |G′) = Ω2(G, G′) −
(
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)
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(
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)
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(
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)
Hence,

Ω2(G, G′) = ((G |G′) + ((G′) ++D(G) ++D(G′) ++5 .0. (A.17)

and analogously

((G′|G) = Ω2(G, G′) −
(
((G) ++D(G) ++D(G′) ++5 .0

)
. (A.18)

Second, consider the recursion forΩ2(G, G′) and substitute in the definitions of surplus to get a
second expression for the latter:

�Ω2(G, G′) = 52(G, G′) + �
[
− ((G |G′) − ((G′|G)

]
⇔ �((G |G′) = 52(G, G′) − �Ω2(G, G′) − �((G′|G)
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Substituting for ((G′|G) using equation (A.18) as well as forΩ2(G, G′) using equation (A.17), and
collecting terms yields

�((G |G′) = 52(G, G′) − �Ω2(G, G′) − �
[
Ω2(G, G′) −

(
((G) ++D(G) ++D(G′) ++5 .0

) ]
= 52(G, G′) − (� + �)Ω2(G, G′) + �

[
((G) ++D(G) ++D(G′) ++5 .0

]
= 52(G, G′) − (� + �)

(
((G |G′) + ((G′) ++D(G) ++D(G′) ++5 .0

)
+ �

[
((G) ++D(G) ++D(G′) ++5 .0

]
Simplifying yields

((G |G′)
(
� + 2�

)
= 52(G, G′) − �

(
+D(G) ++D(G′) ++5 .0

)
+ �((G) − (� + �)((G′). (A.19)

A.2.3 Derivation of the wage function

The value of employment for worker G when their coworker is of type G′ is

�+4.2(G |G′) = F(G |G′) − 2�$((G |G′) + �$((G).

Combining with the surplus sharing rule (26) yields

F(G |G′) = �+D(G) + (� + 2�)$((G |G′) − �$((G) (A.20)

We can simplify this expression further. First, substitute for (� + 2�)((G |G′) from equation
(A.19) to get

F(G |G′) = �+D(G) + $
[
52(G, G′) − �

(
+D(G) ++D(G′) ++5 .0

)
+ �((G) − (� + �)((G′)

]
− �$((G),

= $ 52(G, G′) + (1 − $)�+D(G) − $�
(
+D(G′) ++5 .0

)
− $(� + �)((G′),

Next, substitute for ((G′) from equation (A.16) to obtain

F(G |G′) = $ 52(G, G′) + (1 − $)�+D(G) − $�
(
+D(G′) ++5 .0

)
− $

[
51(G′) − �

(
+D(G′) ++5 .0

)
+ �E.D(1 − $)

∫
3D(G̃′′)
D

((G̃′′|G′)+3G̃′′
]

= $
(
52(G, G′) − 51(G′)

)
+ (1 − $)�+D(G) − $(1 − $)�E.D

∫
3D(G̃′′)
D

((G̃′′|G′)+3G̃′′.
(A.21)

A.2.4 Monotonicity Lemma

The following lemma implies that Hagedorn et al.’s (2017) non-parametric ranking algorithm
extends to the present environment.

Lemma 2. Assume that
51(G)
%G > 0,

% 52(G,G′)
%G > 0, and $ > 0. Then: (i) The value of unemployment

+D(G) is monotonically increasing in G, and (ii) so is the wage function F(G |G′).
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The proof is lengthy but straightforward, involving substitution and differentiation of the
surplus equations. It was included in a working paper version but is omitted here for sake of
brevity.

A.3 Closed-form results for a stylized version

The full, quantitative model does not admit closed-form characterization of matching decisions
and the distribution of wages. The issue lies with the value of either side’s outside option (waiting)
which at once informs the matching decision and at the same time is endogenous to the matching
decisions taken by all agents in the economy. After all, it is those decisions that pin down who
is available for meetings if you do wait. This general-equilibrium interplay between individual
decisions and distributional dynamics is characteristic of the class of mean-field games to which
the present model belongs. To solve for matching decisions and distributions by hand, then, we
need to sever their mutual interdependence. To do so, I adapt the model of Eeckhout and Kircher
(2011).A.2 I focus on matching of pairs of workers into a team, each managed by a firm, rather
than matching between one worker and one firm. I show how to derive closed-form expressions
for the degree of coworker sorting and firm-level inequality.

A.3.1 Environment

As in the main model, there is unit mass of workers, with types uniformly distributed over [0, 1].
There is exactly half as many firms which, as in the main text, are ex-ante homogeneous with
productivity normalized to unity.

Production with a single worker is normalized to be zero and 52(G, G′) = G + G′ − �(G − G′)2,
where � > 0 again indicates the strength of complementarities. This specification of team
production is motivated by a second-order Taylor approximation to the micro-founded CES
function in Proposition 1 around the mean worker type, i.e., around G+G′

2 . Then (G − G′)2 is
proportional to the variance of types and � measures the production loss due to coworker
mismatch.

Consider a finite-horizon setup in which there are three stages B ∈ {0, 1, 2}. All the focus will
be on the outcomes in B = 1; the other two stages merely serve to frame the decision problem in
B = 1. Everyone starts out unmatched. In B = 0, each firm meets and matches with one worker.
Our focus is on the following matching decision, to be taken in B = 1. Each worker-firm pair
coming into B = 1, of which there is a mass 1

2 , is randomly paired with one of the remaining
unmatched workers. Either they match, produce, and share the output. The agents are then idle
in B = 2. Or they decide to wait, in which case all agents separate, each worker pays a fixed search
cost 2, and they can be active in stage B = 2. Specifically, in return for paying the search cost,
each worker in the final stage is paired with their optimal match. Finally, payoffs are determined
according to the following, simplified protocol. Firms have no bargaining power and each worker
receives their outside option plus half the surplus generated by the match.

A.2The spirit of this exercise is similar to Coles and Francesconi’s (2019) observation about search-and-matching
models with ex-ante heterogeneous agents: “[M]uch can be learned about the structure of steady state equilibria
from considering the partial equilibrium conditions [for an exogenously given population of unmatched agents] in
isolation.” The same reasoning applies here, except that I do not adopt a “clones assumption” (Burdett and Coles,
1999) but, instead, use Eeckhout and Kircher’s (2011) trick to gain tractability.
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Relative to the full model, we have complete destruction of matches after the production
stage (� = 1); every firm is guaranteed to meet one worker in every period; and there is zero dis-
counting. As in Atakan (2006), the search cost is explicit instead and, as such, type-independent.
This contrasts with the full model, where search costs are implicit. In that case, more produc-
tive agents have greater opportunity costs of time due to discounting, hence search frictions
disproportionately erode their value of search (Sandmann and Bonneton, 2022).

A.3.2 Solving the model by backward induction

FRICTIONLESS MATCHING IN B = 2. Matching in the second stage is frictionless. As described e.g.
in Boerma et al. (2021), the problem of a firm is to choose workers G and G′ to maximize profits,
taking the wage schedule for workers, F : [0, 1] → R+, as given:

E = max
G,G′

(
52(G, G′) − F(G) − F(G′)

)
.

Any worker G chooses an employer (among which they are indifferent) and coworker G′ to
maximize their wage income, taking as given the firm value, E, and the coworker’s wage schedule:

F(G) = max
G′

(
52(G, G′) − F(G′) − E

)
.

An equilibrium is a tuple (�, F, E), with probability measure � over workers and coworkers
indicating the assignment, such that firms solve their profit maximization problem, each worker
solves their respective problem, and payoffs are feasible with respect to production. The firm’s

first-order condition for a worker is
% 52(G,G′)

%G − %F(G)
%G = 0. From the second-order conditions, per

Becker (1973), we know that when the production function is supermodular in worker types, i.e.,
when � > 0, then the optimal assignment among workers features positive assortative matching
between coworkers. That is, we have a deterministic coupling, or matching function,� : [0, 1] →
[0, 1] and, specifically, �∗(G) = G. The wage schedule is then derived by integrating over the
first-order condition under the equilibrium assignment. Under our parametric assumptions on
the production function and the bargaining process, this yields F∗(G) = G for any G and E = 0.

STAGE-1 MATCHING DECISION. Each firm with one worker, the latter being denoted G′, is
randomly matched with an unmatched worker whose type is G. If they match, the team produces
and the output value is shares. Then they are idle in the final stage. Else, the partners are all
unmatched, each worker pays a fixed search cost 2, and all agents actively participate in the
stage-2 matching process.

A firm with worker G′ that is randomly matched a worker G decides to hire them if the joint
value of production is (weakly) greater than the sum of the respective outside options, taking
into account the cost of search.A.3 Using the same notation as in the full model, this means that

A.3I assume that when the parties are indifferent between producing now and waiting they opt for the former. This
assumption does not, of course, affect the substantive results.
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ℎ(G |G′) = 1⇔ ((G |G′) > 0, whereA.4

((G |G′) = 52(G, G′) −
[
F∗(G) + F∗(G′) + E∗ − 22

]
.

Substituting for the last-period payoffs, i.e.,F∗(G) = G and E∗(H) = 0, and simplifying shows that
a match is formed whenever |G′ − G | > B∗, where the equilibrium threshold B∗ satisfies

B∗ =
√
22/�. (A.22)

Equivalently, the (symmetric) matching set is "(G′) = {G ∈ X : G′ − B∗ > G < G′ + B∗}.A.5

It immediately follows that greater complementarities, corresponding to a higher value of �,
render the matching set narrower, whereas greater search costs, 2, render the matching set wider.

STAGE-0 MATCHING DECISION. At the very beginning, each firm is randomly paired with one
worker. It is optimal to match, since the opportunity cost of doing so is zero.A.6

A.3.3 Characterization

Next, we can characterize the sorting patterns and wage-distributional outcomes implied by this
matching rule in closed-form. To ensure maximum comparability with the full model, I take
the following approach: I focus on the outcomes for workers that are part of matched formed in
stage 1; and I re-weight these workers according to the (uniform) population distribution. That is,
the marginal distribution of worker types participating in stage-1 matches is taken to be uniform.
In this way, the results are not biased by the fact that stage-2 outcomes exhibit no mismatch
by construction; nor is the workforce composition mechanically biased towards workers with
intermediate quality levels who accept a wider range of partners than those at the tails of the
quality distribution .A.7

MATCHING PATTERNS. The key step affording analytical tractability is to observe that for any
threshold level B, the distribution of coworker types conditional on type G, denoted Φ(G′|G),
takes the form of a piecewise uniform distribution:

Lemma 3 (Conditional type distribution). Given a threshold distance B, the conditional distribu-
tion of coworkers for G ∈ X is

Φ(G′|G) =


0 for G′ < sup{0, G − B}

G−sup{0,G−B}
inf{G+B,1}−sup{0,G+B} for G′ ∈ [sup{0, G − B, }, inf{G + B, 1}]
1 for G′ > inf{G + B, 1}

A.4As discussed in Footnote 7 of Eeckhout and Kircher (2011), for low types the surplus in the next period may not
exceed the total waiting cost. In order to avoid keeping track of endogenous entry, I assume that people will search
even if that is the case.

A.5This simple formulation also emerges as a special case in Eeckhout and Kircher (2011). The result also resembles
circular production models à la Marimon and Zilibotti (1999).

A.6To resolve the indifference case, we could of course assume an infinitesimally small positive production value.
A.7Concretely, since the matching set is "(G) = {G′ ∈ X : G − B∗ < G > G + B∗}, for any B∗ < 1, workers outside

the interval [B∗ , 1 − B∗]would be under-represented relative to those inside that interval.
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Proof. The distribution of coworkers for a worker of type G is

Φ(G′|G) =
∫
X 1{G̃ ∈ "(G)}3Φ(G̃)
Φ(<(G)) −Φ(<(G))

where <(G)) = sup"(G) and <(G)) = inf"(G); given the assumption of uniform weights on
types among the matchedΦ(G) is the uniform cdf.

Assuming that potential coworkers are uniformly distributed, the equilibrium matching rule
then implies that

G′ ∼


*[0, G + B] for G ∈ [0, B)
*[G − B, G + B] for G ∈ [B, 1 − B]
*[G − B, 1] for G ∈ [1 − B, 1]

Writing this out more carefully for three different segments, for G ∈ [0, B):

Φ(G′|G) =


0 for G′ = 0
G′
G+B for G′ ∈ [0, G + B)
1 for G′ > G + B.

Next, for G ∈ [B, 1 − B]:

Φ(G′|G) =


0 for G′ < G − B
G′−(G−B)
1−(G+B) for G′ ∈ [G − B, G + B]
1 for G′ > G + B.

Finally, for G ∈ (1 − B, 1]:

Φ(G′|G) =


0 for G′ < G − B
G′−(G−B)
1−(G−B) for G′ ∈ (G − B, 1]
1 for G′ = 1.

�

Using Lemma 3, we can describe coworker sorting patterns in closed-form as follows:

Proposition A.1 (Coworker sorting). For a given threshold B,

(i) the coworker correlation is given by

�GG = (2B + 1)(B2 − 1)2;
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(ii) the average coworker type is

�̂(G) = �̂(G) =


G+B∗
2 for G ∈ [0, B∗)
G for G ∈ [B∗, 1 − B∗]
1+G−B∗

2 for G ∈ (1 − B∗, 1].

Proof. Part (ii) immediately follows from 3. For part (ii), notice first that under the uniform
distribution, the mean type is Ḡ = 1

2 and the variance is 1
12 . We need to derive the covariance

term, which is defined as

2̄GG =

∫
X

∫
X
(G − Ḡ)(G′ − Ḡ)3Φ(G′|G)3Φ(G).

Step 1. Substituting for the piece-wise conditional match distribution and the uniform
population weights, for a threshold B,

2̄GG =

∫ B

0

∫ G+B

0

(G − 1

2
)(G′ − 1

2
) 1

G + B 3G
′3G

+
∫ 1−B

B

∫ G+B

G−B
(G − 1

2
)(G′ − 1

2
) 1
2B
3G′3G

+
∫ 1

1−B

∫ 1

G−B
(G − 1

2
)(G′ − 1

2
) 1

1 − (G − B)3G
′3G

Step 2. Integrate over G′.
The different components are:∫ G+B

0

(G − 1

2
)(G′ − 1

2
) 1

G + B 3G
′ =

1

2
(G − Ḡ)(B + G − 2Ḡ)∫ G+B

G−B
(G − 1

2
)(G′ − 1

2
) 1
2B
3G′ = (G − Ḡ)2∫ 1

G−B
(G − 1

2
)(G′ − 1

2
) 1

1 − (G − B)3G
′ =

1

2
(G − Ḡ)(1 − B + G − Ḡ)

Step 3. Integrate over G.

2̄GG =

∫ B

0

1

2
(G − Ḡ)(B + G − 2Ḡ)3G +

∫ 1−B

B

(G − Ḡ)23G +
∫ 1

1−B

1

2
(G − Ḡ)(1 − B + G − Ḡ)3G

=

[
5

12
B3 − 5

8
B2 + 1

4
B

]
+ (2B − 1)

3

12
+

[
5

12
B3 − 5

8
B2 + 1

4
B

]
=

1

12

[
(2B + 1)(B − 1)2

]
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Hence, the correlation is

�GG = (2B + 1)(B2 − 1)2.

�

Part (i) of Proposition A.1, together with equation (A.22) summarizing the equilibrium match-
ing decision, demonstrates that the coworker correlation coefficient, �GG is increasing in �
– stronger complementarities give rise to more pronounced coworker sorting. In particular,
�GG → 1 as � → ∞. Conversely, greater search costs dilute the incentive to wait for the best
match and accordingly lower the degree of sorting observed in the economy. This result therefore
sharply summarizes the tradeoff between complementarities and search costs in determining
coworker sorting patterns in the economy.A.8

Part (ii) of Proposition A.1 paints a more disaggregated picture of matching patterns that
reveals non-linearities arising from asymmetries in the matching set. It defines for every worker
type the average coworker type for a given threshold level B. Figure 4a in the main text graphically
illustrates. The dashed-dotted and dotted lines describe matching patterns under, respectively,
the deterministic coupling �(G) = G that captures matching decisions under PAM in the friction-
less economy (dashed 45-degree line); and the independent coupling that intuitively corresponds
to a random matching process (dotted, horizontal line). The solid line describes �̂(G) for a low
value of � and the dashed line illustrates �̂(G) for a higher value of �.

We can make three observations. First, for “middle types” such as G = 1
2 , the average coworker

type is invariant to changes in �. Intuitively, stronger complementarities mean that such an
agent is less likely to be in a team with a much better agents but the likelihood of being teamed
up with a much worse agent shrinks in symmetric fashion. Second, the presence of search
costs means that low types are, on average, paired up with agents better than them, whereas
high types are typically paired up with coworkers worse than them. Lastly, a strengthening of
complementarities increases the average coworker type for the best; and it lowers it for the worst.
This force has thus the potential to engender polarizing dynamics wherein firms with “superstar
teams” pull away while “laggards” fall behind.

WAGE DISTRIBUTION.
The production function, matching patterns, and wage sharing rule jointly determine the

distribution of wages in the economy. Here we are particularly interested in the fraction of
wage dispersion that occurs between firms. A tedious but otherwise straightforward sequence of
integration and algebra steps yields the following result.

Proposition A.2. Given a threshold distance B and a value of �, the between-firm share of
the variance of wages is equal to

−13 �2 B5

2400 +
�2 B4

80 + 5 B3

36 − B2

6 + 1
12

�2 B4

45 −
4897 �2 B5

10800 −
�2 B6

324 +
19 �2 B5 ln(2)

30 + 1
12

. (A.23)

A.8In practice, the worker types G are not observable, of course. Defining an observable measure of types following
Borovičková and Shimer (2020), and denoted�(G), yields to a coworker sorting correlation coefficient that is virtually
indistinguishable from �GG (in population). It is also characterizable in closed form but less intuitively, being equal

to ��� =
10�2B6−3�2B5+3240B3−4860B2+1620

−60�2B6+36�2B5+1620 .
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Proof. To find the between-team share of the variance of wages, first compute the total wage
dispersion as the sum of the variance of wages between and within types. Then compute the
variance of the average wage by team, and the between-share is the ratio of the latter over the
former. Many of the steps are straightforward but lengthy, following similar steps as in the
preceding section, hence I only sketch the procedures and intermediate results.

Total wage dispersion. The average wage can be computed as

�̄ =

∫ B

0

�1(G)3G +
∫ 1−B

B

�<(G)3G +
∫ 1

1−B
�ℎ(G)3G

where

�(G) =
∫ 1

0

F(G, G′)3Φ(G′|G).

Performing the relevant integration steps, utilizing Lemma 3, and simplifying yields

�(G) =


�1(G) := G − �

6

[
(G − B)2 + GB

]
for G ∈ [0, B)

�<(G) := G − �
6 B

2 for G ∈ [B, 1 − B]
�ℎ(G) := G − �

6

[
1 + B − 2G − B2 − G2 − BG

]
for G ∈ (1 − B, 1].

After some further integration and simplification, we obtain

�̄ =
1

2
− 1

6
�B2(1 − B

3
)

The between-type variance is equal to

�̄2between-type =

∫ B

0

(
�1(G) − �̄

)2
3G +

∫ 1−B

B

(
�<(G) − �̄

)2
3G +

∫ 1

1−B

(
�̄ℎ(G) − �̄

)2
3G,

which corresponds to the contribution of worker heterogeneity to total wage inequality.
After more integration and algebra, we find that this is equal to

�̄2� =
1

12
− �2B5

12
( B
27
− 1

45
)

Conditional on a type G, the variance of wages is equal to

�2�(G) =

∫ 1

0

(
F(G |G′) − �(G)

)2
3Φ(G′|G).

Calculating this expression for the three segments of worker types – bottom, middle, and high –
we then obtain the average within-type wage variance as

�2within � =

∫ B

0

�2
�1(G)3G +

∫ 1−B

B

�2�<(G)3G +
∫ 1

1−B
�2
�ℎ(G)3G.
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Performing the usual piece-wise integration yields

�2within-type =
�2 B4 (2280 B ln (2) − 1639 B + 80)

3600
,

and, hence, the total wage variance is equal to

�2F =
1

12
+ �2 B4

45
− 4897 �2 B5

10800
− �2 B6

324
+ 19 �2 B5 ln (2)

30
.

Between-share of wage inequality. Finally, we compute the variance of the average wage in
a firm, which given our assumptions on the firm earning zero return just corresponds to output
per worker (i.e., productivity). That is,

�2F,between-firm =

∫ B

0

[ ∫ G+B

0

(
52(G, G′)

2
− �̄

)2
1

G + B 3G
′
]
3G

+
∫ 1−B

B

[ ∫ G+B

G−B

(
52(G, G′)

2
− �̄

)2
1

2B
3G′

]
3G

+
∫ 1

1−B

[ ∫ 1

G−B

(
52(G, G′)

2
− �̄

)2
1

1 + B − G 3G
′
]
3G

=
1

12
− 13 �2 B5

2400
+ �2 B4

80
+ 5 B3

36
− B

2

6
,

where the last equality follows after another sequence of integration and algebra. The result in

Proposition A.2 then follows by taking the ratio
�2
F,between-firm

�2F
. �

Proposition A.2 makes precise the following two points. First, the between-firm variance
share unambiguously increases with the strength of coworker complementarities, captured by
�. Second, for B = 0, which in particular obtains in equilibrium when search costs are absent,
between-firm inequality accounts for all of the dispersion in wages.

B Empirics

B.1 Data

B.1.1 SIEED

This section provides further details on the Sample of Integrated Employer-Employee Data
(SIEED 7518) and how I process the data. Access is provided by the Research Data Center of the
German Federal Employment Agency at the Institute for Employment Research (IAB). A detailed
description can be found in vom Berge et al. (2020). To ensure best practices, I extensively rely
on publicly available code by Eberle and Schmucker (2017) and Dauth and Eppelsheimer (2020).
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Individual records originate in labour administration and social security data processing.B.1

The SIEED covers every worker at a random sample of establishments as well as, crucially,
the complete employment biographies of each of these workers, even when not employed at the
establishments in the sample. To maximize sample coverage, I do not restrict myself to the panel
establishments, but instead require a minimum number of persons in every establishment-year
cell (see below). Variables available include a worker’s establishment and average daily wage
alongside a rich set of other characteristics, including employment status, age, gender, tenure,
occupation, and education, among others. Throughout, I use the KldB-1988 2-digit occupational
classification, which the IAB reports in harmonized form throughout the entire sample period.

The employment biographies come in spell format. I transform the dataset into an annual
panel. Where a worker holds multiple jobs in a year, I define the job with the highest daily wage
as the main episode. Nominal values are deflated using the Consumer Price Index (2015 = 100).

My sample selection criteria are similar to other studies using this dataset or studying similar
topics (e.g., Card et al., 2013). In a first step, I select employees aged 20-60 with workplaces
in West German states who are liable to social security and are not in part-time or marginal
employment (i.e., I limit the sample to full-time employeese). I also drop jobs with real daily
earnings of less than 10 Euros. I drop observations in select industries and create a consistent
industry classification at the 2-digit level of the OECD STAN-A38 nomenclature.B.2

A well-known and non-trivial limitation of the German matched employer-employee data
is that the earnings variable is top-coded at the so-called “contribution assessment limit” of
the social security system (“Beitragsbemessungsgrenze”). To impute right-censored wages, I
implement best practices, specifically following Card et al. (2013), who build on Gartner (2005)
and Dustmann et al. (2009). This approach involves fitting a series of Tobit models to log daily
wages, then imputing an uncensored value for each censored observation using the estimated
parameters of these models and a random draw from the associated (censored) distribution. I fit
16 Tobit models (4 age groups, 4 education groups), after having restricted the sample per the
above). I follow Card et al. (2013) in the specification of controls by including not only age, firm
size, firm size squared and a dummy for firms with more than ten employees, but also the mean
log wage of co-workers and fraction of co-workers with censored wages. Finally, following Dauth
and Eppelsheimer (2020), whose publicly available code I heavily rely on, I limit imputed wages at
10 times the 99th percentile. In a second sample restriction step, I then drop establishment-year
cells with fewer than ten full-time employees or worker-year observations and restrict attention
to the largest connected set. The final sample (1985-2017) includes 17,126,027 person-year
observations for 1,982,239 unique persons, whose average age is 38.49. The median unweighted
establishment size is 29. The average real daily wage in 2010 is 106.48 Euros.

B.1Relative to the LIAB dataset, which is more commonly used, including in a previous version of this paper, the
SIEED is a new product offered by the IAB. It does not include information from the IAB Establishment Panel survey
but, crucially, comes with a much larger coverage.

B.2I drop Agriculture, forestry and fishing (1); Mining and quarrying (5); Utilities (35-36); as well as Activities of
households as employers; undifferentiated activities of households for own use (97) and Activities of extraterritorial
organizations and bodies (99). The selection aims to ensure consistency with analyses for the Portuguese case.
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B.1.2 Portuguese micro-data

The construction of the Portuguese dataset is described in detail in Criscuolo et al. (2023), from
which the results relating to Portugal that are shown in this paper are excerpted.B.3 Here I provide
a brief summary. After an extensive data cleaning procedure to handle duplicate person and
employer identifiers, we impose sample restrictions similar to those described in the preceding
section. All observations retained relate to persons employed by third parties. Real hourly wages
include base pay, regular benefits, and bonus pay. As wages are not top-coded, no imputation
procedure is needed. I drop observations below the statutory minimum monthly pay, as in
Cardoso et al. (2018). By merging in balance sheet and income statement information from
the Informação Empresarial Simplificad (SCIE), we can construct a measure of value-added
per worker to study dispersion in firm-level productivity. Given the sampling frame of the
SCIE, I restrict myself to the non-financial corporate sector. While primarily focusing on the
2010-2017 sample, where longer periods are considered I use a combination of official and
unofficial but widely used harmonization crosswalks for occupations and industries. The final
sample (1986-2017) includes 21,200,256 person-year observations, of which 6,930,892 belong
to the 2010-2017 sample. In 2017, there are 848,970 workers employed at 19,391 unique firms.
Throughout, as a measure of a worker’s type I use the AKM method. The same analysis but using
the non-parametric ranking approach yields very similar results when comparing methods in
a subsample containing only one gender (the full sample is too large for the non-parametric
method to be feasible).

Regarding the industry-level proxy for coworker skill complementarity used in Section 4.3, I
first construct the “CTIC” measures (Communication, Impact, Commmunication, Contact) for
each O*NET SOC occupation based on the average score assigned by the O*NET experts on a
Likert scale from one to five, and taking the mean across the four different dimensions. Then,
after cross-walking to the ISCO-2d classification available in the QP data using publicly available
crosswalks, I construct an employment-weighted mean score for each 4-digit industry. The
reader is referred to Bombardini et al. (2012) for details on the questions selected from O*NET.

B.2 Methodology

B.2.1 Measuring worker types

As stated in Section 4.1, I implement two alternative approaches to estimate each worker’s time-
invariant quality type in the data. One ranks workers by their fixed effect from Abowd et al. (1999,
AKM hereafter) style log-linear wage regressions. An alternative that is less common but more
consistent with the structure of the model uses the non-parametric ranking algorithm proposed
in Hagedorn et al. (2017). This section provides details on the implementation of both methods.

Under either method, given a individual’s unique rank in the (sample-period specific) type
distribution, I compute an individual’s decile rank in the year-specific distribution. Hence,
types are uniformly distributed in each year, even as the number of workers varies across years
(different from the model). In any case, the binning procedure also implies that a worker’s decile
rank generally does not change across years. I omit a time subscript to underline that Ĝ8 denotes

B.3In addition to Chiara Criscuolo and Peter Gal, I thank the following individuals for their generous answers to my
questions: Ana Rute Cardoso, Priscilla Fialho, Paulo Guimarães, Pedro Portugal, Pedro Raposo and Marta Silva.
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an individual characteristic that is time-invariant modulo sample composition changes.

B.2.1.1 AKM models. Estimation of two-way fixed-effects regressions in the spirit of AM
is a popular approach to account for unobservable worker and firm effects, is widely used in
empirical studies of wage inequality and can, at a minimum, be viewed as a useful diagnostic
tool. I estimate the AKM model separately for five overlapping sample periods. This estimation
is implemented in Stata using the reghdfe package (Correia, 2017).

My implementation takes care to mitigate limited mobility bias, which is a form of incidental
parameter bias arising from the fact that a large number of firm-specific parameters (i.e., fixed
effects) that are solely identified from workers who move across employers. To this end I follow
Bonhomme et al. (2019) and reduce the dimensionality of the estimation problem by clustering
similar firms.B.4 Clusters are found by solving a weighted k-means problem,

min
:(1),...,:(�),�1 ,...,� 

�∑
9=1

= 9

∫
(�̂9(F) − � 9 (F))23�(F), (B.1)

where :(1), ..., :(�) constitutes a partition of firms into  known classes; �̂9 is the empirical cdf
of log-wages in firm 9; = 9 is the average number of workers of firm 9 over the sample period; and
�1, ...., � are generic cdf’s.

I use a baseline value of  = 20 but have experimented with  = 10 and  = 100 as well (the
choice makes little practical difference, as reported also by Bonhomme et al. (2019)). I use firms’
wage distributions over the entire sample period on a grid of 20 percentiles for clustering.

Different from Bonhomme et al. (2019), and in similarity to Palladino et al. (2021), I then
stick to the two-way fixed effect regression approach rather than estimating a correlated randon
effects model. That is, after imputing a cluster to each worker-year observation, I estimate the
following regression, which uses cluster effects instead of firm effects:

ln(F8C) = 8 +
 ∑
:=1

#:1(9(8 , C) = :) + &8C (B.2)

where 1(�(8 , C) = :) are dummies indicating which cluster : firm the employer of 8 in period C,
9(8 , C) has been assigned to. I associate with each firm 9 the fixed effect of the cluster to which 9
belongs and denote it # 9 . For the sake of exposition, I abstract from observables, but in practice
I control for an index of time-varying characteristics that includes a cubic in age and a quadratic
in job tenure, exactly as in the construction of the residualized wages described in Section B.1.1.

B.2.1.2 Non-parametric ranking algorithm. As is well known (Eeckhout and Kircher, 2011;
Lopes de Melo, 2018; Bonhomme et al., 2019), the restrictions imposed by the AKM model
are inconsistent with common structural models, including that laid out in Section 3. As an

B.4For Portugal, I have experimented with a variety of bias-correction methods. In particular, the method discussed
here as well as the approaches of Andrews et al. (2008) and Kline et al. (2020) yield very similar findings. Moreover,
the uncorrected version appears significantly biased, overestimating the contributions of firm-specific pay premia
and underestimating the degree of worker-firm and worker-worker segregation.
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alternative way of estimating worker quality types, I therefore implement a version of the non-
parametric ranking algorithm proposed in Hagedorn et al. (2017). For a lemma indicating the
theoretical applicability of this method, see Appendix section A.2.4. Intuitively, since both
production and the value of unemployment are increasing in worker productivity, wages within
firms are also increasing in worker type. We can then infer a partial ranking of employees in a
given firm from their wages (Anna and Bob both work at Zara in Cambridge; if Anna’s wage is
higher than Bob’s, the algorithm interprets that as Anna being ranked above Bob). If no firm
matches with all workers, we have to aggregate the partial within-firm rankings to a global one
by exploiting the logic of transitivity and worker mobility across employers (Bob changes job to
work for H&M and has a new coworker, Carl; if Bob is ranked above Carl, then we infer Anna’s
rank to be greater than Carl’s.)

To handle potential inconsistencies across partial rankings, measurement error being one
relevant source, Hagedorn et al. (2017, Online Appendix C) adapt the Kemeny-Young method,
which minimizes the sum of Kendall-tau distances between two rankings, and propose a compu-
tationally feasible approximation to the NP-hard problem of uncovering the exact solution. In my
implementation for convergence I require the correlation between the rankings obtained from
consecutive iterations to be at least 0.995. The implementation in Octave, run on the FDZ-IAB
servers, takes around three weeks when a ranking is created separately for each of five sample
periods.

B.2.2 Approximating the cross-partial wage derivative

The cross-partial derivative of the wage function, denoted %2F(G |G′)
%G%G′ , is a high-dimensional object.

The main text, specifically Section 4.2, discussed two methods to approximate the average cross-
partial: a regression-based approach and a non-parametric (NP) method. Here I first briefly
summarize the practical implementation of the NP method, and then show that in simulated
data generated by the structural model, both methods approximate the truth quite well.

To non-parametrically approximate the average cross-partial derivative of the wage function,
I proceed as follows:

(i) Construct the non-parametric wage function, which given an approximation of the worker
type space on =G grid points is a =G×=G matrix. Denote asF8 9 the average wage of a worker
in decile 8 of the type distribution whose average coworker is in decile 9 of the coworker
type distribution, 8 = 1, ..., =G and 9 = 1, . . . , =G .

(ii) To prevent local nonlinearities in the conditional wage function from biasing the estimate,
fit a polynomial separately for each worker type G. Denote the predicted values F̃8 9 .(In that
sense, the approach here is not completely non-parametric.)

(iii) Given a matrix of these predicted values, numerically compute the cross-partial derivative

based on the matrix [F̃8 9]9=1,...,=G8=1,...,=G
using finite difference methods. Specifically, using for-

ward differences for for 8 , 9 = 1; using backward differences for 8 , 9 = =G ; and using central
differences everywhere else.

(iv) Finally, compute the (unweighted) average;
�%2F(G |G′)
%G%G′ =

∑=G
8=1

∑=G
9=1

�[
%2F(G |G′)
%G%G′

]
8 9

.
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Figure B.1: Recovering the average cross-partial derivative

Notes. This figure shows the true average cross-partial (solid line) alongside approximations obtained using the
non-parametric (dashed) and regression-based (dotted) methods, respectively. The model parameters are those
indicated in Table 3, except that the elasticity of complementarity � is varied, as indicated along the horizontal axis.

For validation purposes, I evaluate both the NP and the regression-based method in model
generated data. In the model, I can compute the exact average cross-partial derivative of the
wage function given the parametrized production function and the mapping between production
cross-partial and wage cross-partial in Corollary 4. Figure B.1 shows that both methods slightly
under-estimate the exact value for any given degree of complementarity, but replicate the positive
relationship very well. The slight under-estimation comes from the fact that neither method
fully captures that the cross-partial is increasing in the distance between G and G′. For the
approximation to work well, it turns out to be important to weight observations by the inverse
probability that the worker-coworker combination associated with that observation occurs in
the data. Else, the parts of the state space where matches are unlikely to occur is underweighted.

B.3 Additional descriptive results

B.3.1 Cross-country evidence on the “firming up” of between-firm inequality

Figure B.2 illustrates cross-country trends for the between-firm share of wage inequality, drawing
on aggregated statistics kindly made available by Tomaskovic-Devey et al. (2020). While the
levels cannot be straightforwardly compared across countries due to variation in the measure of
earnings used (e.g., hourly vs. daily vs. monthly earnings), one can observe a consistent upward
trend for almost all countries.

Interestingly, even in a country like France, where total wage inequality has broadly flatlined
over the past few decades, the between-firm component tends to have increased due to rising
sorting and segregation, whereas within-firm inequality has declined for a variety of reasons
(Babet et al., 2022).
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Figure B.2: Cross-country evidence on the between-firm share of wage inequality

Notes. This figure reports the evolution of the between-firm share of wage inequality for a set of OECD economies.
Data source: Tomaskovic-Devey et al. (2020).

B.3.2 Wage inequality: alternative wage variables

This section examines how robust the increase in the between-establishment share of the vari-
ance of log wages in Germany is to alternative measures of individual wages. Figure B.3 provides
a graphical summary and indicates that controlling for different sets of covariates does not alter
the main conclusion of a rising between-employer component.

The solid line in Figure B.3, in either panel, depicts the standard between-within establish-
ment decomposition of the variance of log raw wages, ln(F̃)8C . In the left panel, the dashed line
in the same colors swaps in the baseline measure of residualized wages used in the main text.
Next, the dotted, dashed-dotted, and dotted-crossed lines also remove, respectively, (2-digit)
occupation FEs, (2-digit) industry FEs, or both. Throughout, by including the worker FEs in the
“residual” component, it is ensured that we do not omit variation in time-invariant individual
earnings that is also present in – indeed, central to – the structural model. For robustness, the
right panel in the figure repeats the same exercise but without including these person FEs when
residualizing wages.

Several observations stand out. First, and reassuringly, the rise in the between-establishment
share of wage inequality is highly robust across all specifications. While the level of this share
varies, the increase over time is quite uniform, ranging from 13 to 25 percentage points (1985-
2017). Second, and unsurprisingly, both the level and the percentage point increase in the
between-establishment share are smaller in magnitude when worker FEs are not accounted for.
Third, turning to the role of occupations and industrie, when controlling for both occupation and
industry FEs, the between share rises from 0.21 to 0.35, with most of the increase occurring up
until the Global Financial Crisis. That the increase in the between share is smaller, in percentage
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(a) With worker fixed effects
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(b) Without worker fixed effects

Figure B.3: Rising between-establishment share of wage inequality: alternative wage variables

Notes. This figure depicts the share of the variance of log wages occurring between as opposed to within establish-
ments for different measures of wages: raw wages, the baseline residuals used in the main text, and alternatives that
also incorporate, respectively, occupation or industry fixed effects, or both. The relevant regressions are performed
for the entire sample, then the decomposition is performed year-by-year.

point terms, when taking out occupation and industry FEs is consistent with two points made in
the literature. The first point is that between-firm inequality partly arises from between-industry
differences in average pay (Haltiwanger and Spletzer, 2020). The second is that some of the rise in
between-firm inequality is due to occupational outsourcing. Goldschmidt and Schmieder (2017),
in particular, document that outsourcing of cleaning, security, and logistics services accounts for
around 9% of the increase in German wage inequality since the 1980s.B.5 Moreover, through the
lens of an AKM model – considered in the preceding Appendix section – outsourcing manifests
in a reduction in all three of the between components. In summary, additional controls can
account for some but not the majority of the rise in the between-firm share of wage inequality.

B.3.3 Wage inequality: within-occupation and within-industry decomposition

Figure B.4a depicts a within-occupation decomposition of the variance of log wages into the
between-employer and within-employer components. To this end, the between-within de-
composition is conducted separately for each two-digit occupation, then a person-weighted
year-by-year average is taken across occupations. It can be seen that the between-employer
share has risen substantially also when controlling for between-occupation effects in this way.

Figure B.4b considers the role of industry differences. I decompose the variance of log
wages into three components: between-industry, within-firm within-industry, and between-firm
within-industry. The analysis is done at the two-digit STAN-A38 level. The solid line shows
the total between-firm share of the variance of log wages (which is the fraction of the total
variance due to both between-industry and between-firm within-industry components), while

B.5Bilal and Lhuillier (2021) argue, in the French context, that outsourcing leads to rising labor market sorting
but relatively stable wage inequality, due to an offsetting general-equilibrium mechanism associated with pro-
competitive effects of contractors at the bottom of the job ladder.
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Figure B.4: Rising wage inequality: occupation and industry perspective

Notes. The left panel shows a decomposition of the within-occupation variance of log wages, as described in the
main text. The right panel indicates the between-employer share of the variance of log wages when computed in
the economy as a whole, including between-industry differences, and when computed within-industry. All results
are based on the baseline measure of residualized log wages and are weighted by person-years.

the dashed line shows the share of the within-industry wage variance due to the between-firm
within-industry component. Unsurprisingly, between-firm wage differences play a somewhat
smaller role when controlling for industry (dashed line) compared to the economy-wide analysis
(solid line). The rise captured by the dashed line clearly indicates, however, that the between-
employer share has risen also within industry.

B.3.4 AKM-based variance decompositions

The log-linear structure of the AKM model facilitates widely used diagnostic decompositions.
Given estimated worker and employer fixed effects, 8 and # 9 , we can decompose the variance
of log wages as in Song et al. (2019):

Var(F8C) = Var(8 − ̄ 9) + Var(&8C)︸                       ︷︷                       ︸
within-component

+Var(# 9)) + 2Cov(̄ 9 ,# 9) + Var(̄ 9)︸                                      ︷︷                                      ︸
between-components

, (B.3)

where ̄ 9 is the average worker FE in firm 9. A common interpretation then relates Var(#:)
to firm/cluster-specific “wage premia”, Cov(̄ 9 ,# 9) to “worker-firm sorting”, and Var(̄ 9) to
“worker segregation.”

Before presenting the empirical decompositions, I stress that through the lens of a structural
model with coworker complementarities the three components just mentioned are not neatly
separable. In particular, the AKM model will attribute correlations in output between workers at
the same employer, insofar as they are reflected in wages (and conditional on worker types) to a
common employer component, even if these correlations are, in reality, due to coworker comple-
mentarities. This has at least two implications. First, the “worker-firm sorting” component may
partly pick up coworker sorting. Second, the common interpretation of the employer fixed effect
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as reflecting firm wage premia or wage-setting practices (as opposed to worker characteristics) is
not necessarily warranted.

A natural follow-up question is whether these conjectures are borne out when estimating
AKM regressions on panel data simulated from the structural model. Unfortunately, a quanti-
tatively credible answer to this question requires a version of the model that allows for a firm
size = significantly above two. Otherwise, and imposing empirically consistent patterns of
worker mobility, there is insufficient variation for an AKM-type model to stand a fair chance
at identifying the employer fixed effects. Qualitatively, exercises confirm that estimating an
AKM model on simulated panel data yields positive contributions of the variance of employer
fixed effects and the covariance between worker and employer fixed effects. Solving a model
with unrestricted within-firm coworker interactions in production and “large” firms remains an
unresolved computational challenge (given the exploding state space), which these exercises
suggests may be a promising avenue.

Turning to the empirical variance decompositions, the left panel in Figure B.5 depicts the
results for the German economy on a period-by-period basis. We see that all three between-
components have risen over time. Moreover, the Kremer-Maskin segregation index (Kremer
and Maskin, 1996), which indicates the share of the variance of worker FEs that occurs between
rather than within establishments – and, thus, represents an alternative measure of coworker
sorting – has risen over time. The picture looks very similar if occupation and industry fixed
effects are accounted for as well.B.6 Overall, changes in workforce composition account for more
than fourth fifths of the total increase in the between-employer component, with changes in
what are commonly labelled “firm pay premia” accounting for the remainder.B.7

For comparison purposes, the right-hand panel reports the variance decomposition for
the Portuguese economy. A key takeaway is that even though the between-firm share of the
variance has remained roughly constant since the late 1990s, both Cov(̄ 9 ,# 9) and Var(̄ 9) have
increased, as has the segregation index – similar to the German economy. Controlling for changes
in the firm-specific pay premia, therefore, the sorting and segregation components would have
pushed up between-firm inequality, in line with what we observe for Germany and many other
advanced economies. Silva et al.’s (2022) analysis of the Portuguese economy come to a similar
conclusion.

B.3.5 Schooling: Labor market sorting and Mundlak decomposition

This section performs a Mundlak decomposition of the year-by-year OLS return to schooling,
replicating unpublished material from Card et al. (2013).B.8 The analysis also reveals that labor
market sorting has risen also when worker productivity is proxied by years of schooling.

B.6Interestingly, if one performs the decomposition separately by major sector groups, the upward trend is most
pronounced for knowledge-intensive services.

B.7I thus find a slightly smaller contribution of firm pay premia than Card et al. (2013), my numbers being more
similar to those by Song et al. (2019) for the U.S. One potential reason is that I use a dimension-reduction technique
following Bonhomme et al. (2019) to mitigate limited-mobility bias. In addition, I do not include education as
a control variable. My results remain similar when estimating a higher-dimensional model that also takes out
occupation and industry fixed effects.

B.8Also see https://doku.iab.de/veranstaltungen/2020/PhD_2020_Card_Keynote.pdf (last accessed:
2023-10-05).
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Figure B.5: AKM-based wage variance decomposition

Notes. These panels report the components of the variance of log wages, following equation (B.3), based on the
estimation of the AKM model described in equation (1). The left panel is for Germany, the right panel for Portugal
(where I only use four sample periods to better span missing years in 1990 and 2001).
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Figure B.6: Mundlak decomposition of the returns to schooling

Notes. This figure depicts the year-by-year Mundlak decomposition of the OLS return to years of schooling. “Return:
OLS” corresponds to �ols

C in the text; “Return: coworker ed.” to �estab.
C ; “Return: within-est” to �within

C ; and “Sorting
index” to �C . The wage regressions also control for a quadratic of potential experience and a gender dummy.
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The decomposition is performed in two steps. First, consider a regression of the log wage of
individual 8 in year C on their years of schooling, (8 , and the average years of schooling among
workers in their establishment, (̄ 9(8 ,C),C :

lnF8C = �0 + �within
C (8 + �estab.

C (̄ 9(8 ,C),C + 48C . (B.4)

Second, recover the partial correlation coefficient �C from a regression of (̄ 9(8 ,C),C on (8 :

(̄ 9(8 ,C),C) = �
�
0 + �C(8 + 4̃8 ,C . (B.5)

Then the sum of the coefficients on (8 and on (̄ 9(8 ,C),C , weighting the latter by �C , is equal to the
OLS return to schooling:

�ols
C = �within

C + �C × �estab.
C ,

where �ols
C is estimated from the regression

lnF8C = �0 + �ols
C (8 + 4̌8C . (B.6)

Here, �within
C measures the within-establishment return to schooling, while �estab.

C is an es-
timate of the individual wage return to average establishment schooling, and �C measures
coworker sorting by schooling. Notice that the last term captures a property of the joint distribu-
tion of schooling and coworker schooling, while the first two terms measure the wage return to
schooling.

Figure B.6 plots this decomposition on a year-by-year basis. Two observations stand out. First,
labor market sorting by schooling has consistently increased over time. Second, underpinning
the modest rise in the OLS return to schooling is a more substantial rise in the return to coworker
education and a mildly declining within-establishment return to schooling.

B.3.6 Additional evidence for a rise in specialization

This section reviews additional evidence regarding changes in specialization over time.
First, and briefly, other studies that impose stronger, structural assumptions to quantify

specialization likewise point to a strengthening of specialization over time. Most importantly,
Grigsby (2023) semi-parametrically estimates the economy-wide, multidimensional skill distri-
bution using U.S. panel data on wages and occupation choices. Grigsby’s (2023) findings are
consistent with an increase in specialization: The average within-worker variance of productivi-
ties across tasks has grew by around 50% between the 1980s and 2000s, and transferability of
skills across jobs has declined amongst occupations requiring high-skill training, manual and
social skills.B.9

Second, a broader rise in the prevalence of teamwork is likewise consistent with specialization
having become more important. Beyond the case of science discussed in the main text, such
a rise is documented in surveys, such as Lazear and Shaw (2007) for the U.S., and Wood and

B.9An increase in specialization is also consistent with Braxton et al. (2021), who document an increase in persistent
earnings risk since the 1980s (in U.S. data), concentrated in occupations involving more non-routine cognitive tasks.
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Bryson (2009) for the UK, as well as Bresnahan et al. (2002) and Bloom and Reenen (2011).
Third, we can use the SIEED matched employer-employee and BIBB survey data jointly to

study how individuals’ employer-to-employer transitions reallocate them across jobs with more
or less similar task requirements, asking in particular how these movements in task space have
evolved over time.

I proceed in four steps, extending the analysis in Gathmann and Schönberg (2010) to a time
series dimension. First, consider the set of occupation $. Considering fifteen harmonized
tasks in the BIBB, the task content for each occupation > ∈ $ is defined as the vector l̄> =
(;̄>1, . . . , ;̄>15), where ;̄>� denotes the fraction of workers in occupation > performing task � ∈
{1, ..., 15}. Second, for any two occupations > and >′, I compute the distance in task space as
the (normalized) angular distance,

!(l̄>, l̄>′) = 1

�
cos−1

(
l̄′> l̄>′

| |l̄> | | · | |l̄>′| |

)
∈ [0, 1].

Steps one and two are performed separately for each of the waves of the BIBB survey. To construct
a matrix of pairwise distances that is invariant over time and thus focus on changes in movement
patterns, I take the average across different survey waves.

Third, in the SIEED I identify the subsample of occupational movers. An individual 8 who
in period C is employed at 9 in occupation > counts as an occupational mover if in C + 1, 8 is
employed at 9′ ≠ 9 and >′ ≠ >.B.10 Fourth, the distances {!(l̄> , l̄>′)}>>′ from the BIBB are merged
into the mover subsample of the SIEED.

Following these steps, Figure B.7 plots the cumulative distribution of distances for the periods
1985-1992 and 2004-2009. We observe that the distribution of moves in the earlier period
stochastically dominates that in the latter period. The unconditional average distance travelled
has fallen by 10%, declining from 0.253 to 0.227.B.11

B.4 Additional results

B.4.1 Non-linear coworker aggregation

The main text explains that for each person-year observation I construct an average coworker
type by computing the unweighted arithmetic mean of all coworkers’ types, and notes that this
approach ignores a non-linearity in the aggregation that is implied by the structural model. Here
I elaborate on this approach and discuss robustness results which suggest that the bias from
ignoring this non-linearity is small.

To recap, my baseline approach is to average over coworkers without weighting, that is I
compute Ĝ−8C =

(
1
|(−8C |

∑
:∈(−8C Ĝ:

)
, where (−8C is the set of 8’s coworkers in year C. However, the

structural model and specifically the micro-foundation in Section 3.1 suggest that we ought to ag-
gregate using a power mean that assigns disproportionate weight to low-type coworkers insofar as

B.10Considering the subsample of occupational movers instead of the occupational switching rate itself effec-
tively controls for shocks that move the latter around and which the existing literature has argued are important
(Kambourov and Manovskii, 2009).
B.11This result is robust to controlling for individual potential experience, origin occupation, gender as well as the

state of the business cycle proxied by the overall unemployment rate. Moreover, quantile regressions confirm that
the decline can be observed across different points of the distribution. Results are available upon request.
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Figure B.7: Distribution of task-distances for occupational movers

Notes. This figure plots the cumulative distribution of the distances in task space associated with occupational
switchers, as defined in the text. The CDF is approximated at 25 points for data protection reasons.

coworker complementarities are important. Denote this alternative by G̃−8C =
(

1
|(−8C | (Ĝ:)

1−�) 1
1−� .

Some intuition for what is lost by ignoring this non-linear aggregation can be gained by taking a

second-order Taylor approximation around Ĝ−8C , which shows that G̃−8C − Ĝ−8C ≈ −1
2�

�2G
Ĝ−8C

, where

�2G is the variance of coworker types. This shows that the unweighted average is upward biased in
proportion to the product of complementarities and the dispersion among coworkers. From the
perspective of the structural model, this offers reassurance, since dispersion – which is another
manifestation of imperfect coworker sorting — should be low precisely when � is high.

To evaluate the magnitude of bias empirically, I compare the estimates of coworker sorting
and complementarities for the final sample period under different weighting schemes.B.12 In
addition to the baseline relying on linear aggregation, I recompute the coworker correlation and
estimate regression (38) when computing a weighted average coworker, for each person-year,
under three different values of �: 0.25, 0.50 and 0.75. Table B.1 summarizes the results. It
demonstrates that all four approaches yield very similar estimates. I have, in addition, performed
Monte Carlo simulations using a statistical model of team formation, similar to that introduced
in Section C.1.3, an exercise that likewise suggests a bias in the estimated complementarities
that is positive but small.

B.4.2 Additional cross-sectional validation results

This section reports additional, empirical analysis using the Portuguese micro-data.
First, the richness of the Portuguese data facilitates an alternative operationalization of who

an employees’ coworkers are: those who work at the same hierarchical level of a firm. From

B.12Briefly, it is tempting to consider an iterative approach that alternates between, on the one hand, guessing a value
of � and constructing a weighted average coworker based on that value, and etimating wage complementarities
and inferring a new value of �, on the other hand. While this is possible in principle, note that this inference
ultimately relies on the entire structure of the model, since � is not uniquely pinned down by a given estimate of
wage complementarities. Apart from the computational load, it is not possible to estimate the structural model
directly on the servers of the IAB, where the micro data are stored.

97



Unweighted Weighted: (0.25) Weighted (0.50) Weighted (0.75)
Sorting 0.613 0.617 0.616 0.614
Complementarity 0.00905 0.00896 0.00882 0.00870

Table B.1: Robustness: coworker sorting and complementarities under non-linear aggregation

Notes. This table summarizes estimates of coworker sorting and complementarities when the average coworker
type is computed, respective, as the unweighted arithmetic mean or the weighted power mean, using three different
weighting parameters �. The “Sorting” indicates the correlation coefficient between own type and average coworker
type, while “Complementarity” refers to the point estimate of the interaction coefficient in regression (38). The
sample period is 2010-2017.
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Figure B.8: Complementarities across different hierarchical layers

Notes. This figure reports the point estimate for the coefficient �2 , alongside confidence intervals, when regression
(38) is estimated separately for workers belonging to different hierarchy levels. To avoid overlap across hierarchy
levels, the set of employee 8’s coworkers here is restricted to those employees in the same employer-year-layer cell.

2010 onward, we can use a variable that assigns workers according to a consistent definition
into seven different, vertically differentiated layers, grouped by similarity in the complexity of
tasks and skills required. These range from top executives to non-skilled.B.13 If we interpret these
hierarchical layers as an ordinal proxy for ", in the spirit of Garicano (2000), then we expect
coworker wage complementarity to be greater in higher layers.

To test this hypothesis, I run a variation of the regression specification in (38), for each
; = 1, . . . , 7.B.14 Figure B.8 shows the estimated value of �2 alongside 95% confidence bands for

B.13Per Decree-Law 380/80, firms should indicate for each employee the qualification level indicated in the relevant
Collective Agreement. If this is not available, firms should select the qualification level of the worker. Table B-
1 in Mion and Opromolla (2014) provides details on tasks and skills. Also see Caliendo et al. (2020). I exclude
apprentices/interns/trainees.
B.14I deliberately estimate the regression separately for each layer, as opposed to pooling samples and including a

double interaction between the interaction term and ;, to avoid restricting potential variation in �1 and �2 across ;.
The downside is that, as a result, we do not exploit variation from switchers across layers within firms.
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Figure B.9: Coworker sorting is associated with greater between-firm inequality

Notes. This figure plots the variance of log wages (left panel) and the between-firm share of the variance of log
wages (right panel) against the coworker sorting correlation. The unit of observation is a 4-digit NACE industry,
with at least 5,000 person-year observations and where the industry-level proxy for complementarity is within two
standard deviations. Observations are grouped into 30 bins. The linear regression line is fitted based on unweighted,
non-binned observations.

each layer. The point estimates are almost monotonically increasing in the hierarchical layer,
ranging from effectively zero for those classified as non-skilled to above 0.02 for top executives.
This is not due to the fact that the left-hand side of the regression is the wage in levels and higher-
layer workers earn more, so that �2 is mechanically increasing in the layer, as the dependent
variable is the wage level divided by the layer-specific average wage.

Next, Figure B.9 expands on the cross-industry findings from Section 4.3. It shows in indus-
tries which feature strong coworker sorting a greater share of the variance of log wages occurs
between as opposed to within firms. This is unsurprising but reassuring. In addition, firm-level
productivity is more dispersed in these industries.

These results echo a literature that has highlighted the important role of differences in
workforce composition across firms in explaining between-firm wage inequality. In addition to
the aforementioned Card et al. (2016) and Song et al. (2019), Håkanson et al. (2021) use direct
measures of workers skills from military enlistment tests in Sweden and find that between-firm
skill inequality is a key driver behind between-firm wage inequality. In addition, Sorkin and
Wallskog (2021) find for the U.S., that productivity dispersion, between-firm earnings inequality,
and coworker sorting are successively higher for more recent cohorts of firms in the U.S (also see
Berlingieri et al. (2017)).

Next, Figure B.10 shows that the industry-level measure of the importance of teamwork,
impact on coworker output, communication, and contact following Bombardini et al. (2012),
discussed in Section 4.3, is positively associated with coworker sorting, the between-share of
wage inequality, overall between-firm wage inequality, and productivity dispersion.
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Figure B.10: Bombardini et al. (2012) proxy for complementarity and industry-level outcomes

Notes. Each panel plots the moment indicated in the subtitle of the respective plot against the industry-level proxy
for complementarity constructed from O*NET data following Bombardini et al. (2012). The unit of observation
is a 4-digit NACE industry, with at least 5,000 person-year observations and where the industry-level proxy for
complementarity is within two standard deviations. Industry-level observations are grouped into 30 bins. Industries
are binned into 30 cells. The linear regression line is fitted based on unweighted, non-binned observations.
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Sorting Complementarities

Period Spec. 1 Spec. 2 Spec. 1 Spec. 2

1985-1992 0.47 0.38 0.001 0.000
1993-1997 0.56 0.46 0.002 0.001
1998-2003 0.60 0.48 0.004 0.002
2004-2009 0.65 0.50 0.005 0.002
2010-2017 0.68 0.51 0.005 0.004

Table B.2: Coworker sorting & complementarities: results based on non-parametric ranking method

Notes. This table indicates, under the column “Sorting” the correlation between a worker’s estimated type and that
of their average coworker, separately for five sample periods. The column “Complementarities” indicates the point
estimate of the regression coefficient �2 in regression (38). Under “Specification 1” workers are ranked economy
wide, while under “Specification 2” they are ranked within two-digit occupations. Worker rankings are based on the
non-parametric method described in Appendix B.2.1.2.

Complementarity

Period Spec. 1 Spec. 2

1985-1992 0.0036 0.0022
1993-1997 0.0042 0.0031
1998-2003 0.0070 0.0045
2004-2009 0.0082 0.0054
2010-2017 0.0091 0.0058

Table B.3: Complementarity over time

Notes. This table indicates the point estimate of the coefficient �2 in regression (38), estimated separately for five
sample periods. Under “Spec. 1” the worker ranking is economy wide, under “Spec. 2” it is within-occupation.

B.4.3 Results using non-parametric ranking algorithm

Table B.2 shows the evolution of coworker sorting and coworker complementarity when worker
types that are estimated using the non-parametric method described in Appendix B.2.1.2, instead
of relying on AKM-based fixed effects. In comparison, the levels of sorting are slightly higher and
those of complementarities somewhat lower. The trends are qualitatively the same, though.

B.4.4 Complementarity over time: ranking workers within occupations

Figure B.3 reports the point estimates for the coefficient on the interaction term, �2 , in regression
(38) for each of the five sample periods. In addition to the baseline, where workers are ranked
economy-wide, results for the alternative specification, whereby workers are ranked within
two-digit occupations, are included also. The results are discussed in the main text.
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B.4.5 Measuring complementarity using years of education as a quality measure

As noted in Section 4.2, one concern regarding the evidence for coworker complementarity is that
the dependent variable in regression (38) is the period-C wage but, in addition, the independent
variables of interest (own type and average coworker type) are likewise a function of wages (in all
years C belonging to the sample period in question). While this approach is theory-consistent,
with identification coming from variation in wages over time while the regressors are invariant
across years within sample periods, we may still be worried about a confounding effect. This
section shows that when worker quality is proxied by education – similar to Nix (2020) – and thus
a non-wage characteristic, instead, the main results remain robust.

’85-’92 ’93-’97 ’98-’03 ’04-’09 ’10-’17

Interaction 0.0063*** 0.0060*** 0.0099*** 0.0112*** 0.0129***
(0.0008) (0.0007) (0.0008) (0.0007) (0.0009)

Obs. (1000s) 3,613 2,508 2,694 3,836 4,376
'2 0.5033 0.5451 0.5746 0.6330 0.6425

Table B.4: Regression evidence on coworker complementarity using years of schooling

Notes. Dependent variable is the wage level over the year-specific average wage. Independent variables are a
constant, years of schooling, coworker years of schooling, and the interaction between those two terms. All
regressions include industry-year, occupation-year and employer fixed effects. Employer-clustered standard errors
in parentheses. Observations are unweighted. The sample is unchanged from the main text, except that 96,517
observations with missing years of schooling are dropped. Observation count rounded to 1000s.

Specifically, I adapt equation (38) by regression the wage F8C of worker 8 in period C on their
years of education, denoted B8 , their coworkers’ average years of education, denoted B−8C , and
the interaction of these two terms:

F8C

F̄C
= �0 + �B B̂8 + �B′B−8C + �2 (B8 × B−8C) + # 9(8C) + �>(8)C + �B(8)C + &8C , (B.7)

where B−8C = 1
|(−8C |

∑
:∈(−8C B̂: . To implement this regression, I follow Card et al. (2013) in estimat-

ing the years of education based on the level of training indicated in the SIEED (on which see
Fitzenberger et al., 2006). Notice that the interpretation of the regression coefficients changes
accordingly compared to the baseline, in which worker quality is measured in decile ranks. As
before, I estimate equation (B.7) separately for 5 sample periods.

Table B.4 summarizes the estimation results. It shows, firstly, that the regression coefficient
of interest, �2 , is positive across all periods, and, secondly, points to an increase over time in line
with the baseline estimates. The magnitude of the increase in �2 is similar in proportional terms
to the estimates reported in the main text, rising by about 74% from the first to the final sample
period.

B.4.6 Complementarity regression using lagged types

This section describes a robustness check to the estimation of wage complementarities based
on equation (38). To rule out a mechanical relationship between wages, on the left-hand side,
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and (within-period time-invariant) types, estimated from wages themselves, we can take the
following approach. We assign to each individual 8 in periods ? ∈ {2, 3, 4, 5} the fixed effect
estimated for 8 in period ? − 1, and then re-compute worker deciles and average coworker types,

Ĝ
?−1
8

and Ĝ
?−1
−8C = (|(−8C |)−1

∑
:∈S Ĝ

?−1
:

, on that basis. The correlation between Ĝ8 and Ĝ
?−1
8

is
0.85, consistent with the idea that unobserved individual characteristics captured by the fixed
effect are very persistent. Next, the original wage complementarity regression is re-estimated for
each period ? ∈ {2, 3, 4, 5}, once using the baseline measure of types and once using the lagged
types. To compare like with like, both specifications are estimated on the same subsample of
individuals for whom a type could be estimated in the preceding period.

Table B.5 reports on the results. Throughout, the coefficient on the interaction terms is
positive but estimated to be roughly 50% smaller, on average, when using lagged types, compared
to the baseline. It is difficult to gauge to what extent this difference in magnitude reflects absence
of endogeneity issues from simultaneity or greater attenuation bias due to measurement error
when using lagged types. Reassuringly, though, the evolution over time is similar.

B.4.7 Results when worker types are constructed without controlling for observables

This section addresses the concern – noted in Footnote 45 — that, in the baseline, worker types
were constructed from wages residualized for individual-level observables like age and tenure
that, from a production perspective, we may not want to control for.

As a robustness measure, I re-estimate the AKM models without controlling for polynomials
in age and tenure, then construct worker and coworker types from the worker FEs thus obtained.
The correlation between baseline type measure and this alternative version is 0.83; the same
comparison for the coworker types is higher still, at 0.93.

Turning to labor market outcomes, Table B.6 compares the evolution of coworker sorting
using the baseline type measures and the robustness check. As can be seen, the two approaches
yield extremely similar results. In addition, when re-estimating the complementarity regression
(38) using raw log wages on the left-hand side, and including alternative worker- and coworker-
type measures as well as age and tenure polynomials as separate covariates, the findings are
similar to those reported in Table 2.

In summary, though the treatment of time-varying individual-level observables like age
and tenure in the mapping between theoretical and empirical coworker types is ambiguous, in
practice, sorting and complementarity patterns are very similar irrespective of whether those
observables are held constant or not.

B.4.8 Complementarity and sorting within establishment size groups

A potential concern with the estimates of coworker complementarity in the main text is that
the variation in coworker quality exploited to identify �̂2 in regression (38) is not exogenous
with respect to the error term &8C (or with respect to time variation in the employer fixed effect).
Through the lens of the structural model, this variation naturally occurs due to search frictions
and consequent random variation in what type of employee a given employer has the opportunity
to make an offer to. But it could be argued that this random variation is “good” for identification
purposes only at small firms, whereas for larger firms idiosyncratic variation averages out when
constructing a representative coworker type (cf. Hoxby, 2000). An additional concern is that

103



’9
3-

’9
7

’9
8-

’0
3

’0
4-

’0
9

’1
0-

’1
7

B
as

el
in

e
A

lt
.

B
as

el
in

e
A

lt
.

B
as

el
in

e
A

lt
.

B
as

el
in

e
A

lt
.

In
te

ra
ct

io
n

0.
00

40
**

*
0.

00
19

**
*

0.
00

61
**

*
0.

00
27

**
*

0.
00

74
**

*
0.

00
43

**
*

0.
00

69
**

*
0.

00
38

**
*

(0
.0

00
2)

(0
.0

00
3)

(0
.0

00
3)

(0
.0

00
3)

(0
.0

00
2)

(0
.0

00
3)

(0
.0

00
3)

(0
.0

00
3)

'
2

0.
80

27
0.

74
17

0.
79

72
0.

73
61

0.
82

54
0.

76
56

0.
81

73
0.

74
71

O
b

s.
(1

00
0s

)
1,

98
6

1,
95

9
2,

80
7

3,
05

0

Ta
b

le
B

.5
:E

vi
d

en
ce

o
n

co
w

o
rk

er
co

m
p

le
m

en
ta

ri
ty

:r
o

b
u

st
n

es
s

ch
ec

k
w

it
h

la
gg

ed
ty

p
es

N
ot

es
.T

h
e

co
lu

m
n

s
la

b
el

le
d

“A
lt

.”
re

p
re

se
n

t
re

gr
es

si
o

n
s

u
si

n
g

la
gg

ed
ty

p
es

,c
o

m
p

ar
ed

to
“B

as
el

in
e”

es
ti

m
at

ed
o

n
th

e
sa

m
e

sa
m

p
le

.T
h

e
d

ep
en

d
en

t
va

ri
ab

le
is

th
e

w
ag

e
le

ve
lo

ve
r

th
e

ye
ar

-s
p

ec
ifi

c
av

er
ag

e
w

ag
e.

In
d

ep
en

d
en

t
va

ri
ab

le
s

ar
e

a
co

n
st

an
t,

w
o

rk
er

ty
p

e,
co

w
o

rk
er

ty
p

e,
an

d
th

e
in

te
ra

ct
io

n
b

et
w

ee
n

th
o

se
tw

o
te

rm
s.

A
ll

re
gr

es
si

o
n

s
in

cl
u

d
e

in
d

u
st

ry
-y

ea
r,

o
cc

u
p

at
io

n
-y

ea
r

an
d

em
p

lo
ye

r
fi

xe
d

ef
fe

ct
s.

E
m

p
lo

ye
r-

cl
u

st
er

ed
st

an
d

ar
d

er
ro

rs
ar

e
gi

ve
n

in
p

ar
en

th
es

es
.

O
b

se
rv

at
io

n
co

u
n

tr
o

u
n

d
ed

to
10

00
s.

104



Coworker sorting

Period Baseline Alternative

1985-1992 0.427 0.433
1993-1997 0.458 0.479
1998-2003 0.495 0.518
2004-2009 0.547 0.572
2010-2017 0.617 0.609

Table B.6: Coworker sorting: robustness check of constructing types without residualizing for observables

Notes. This table indicates the correlation coefficient between a worker’s estimated type and that of their average
coworker, computed separately for five sample periods. In the “Baseline” column, worker types are estimated by
controlling for time-varying individual-level observables, whereas in the “Alternative” those controls are omitted. In
both cases, the AKM method is used and the worker ranking is performed within the economy as a whole.

assuming the relevant coworker set to comprise by all other employees in the same establishment-
year cell may be less plausible for larger establishments.

To evaluate these concerns, I compute the coworker correlation measure of sorting and
estimate the strength of coworker complementarity, per regression (38), separately for 4 different
establishment size groups and, to study time trends, for 5 different sample periods. I perform this
exercise both for the full sample and for the subsample of ‘panel establishments’ for which the
SIEED dataset contains information on the entire workforce. Figure B.11 visualizes the results.

The results from this exercise are reassuring. The magnitude of the estimated comple-
mentarity coefficient is of similar magnitude as in the pooled sample for the subset of smaller
establishments – for which the identification strategy may be argued to be more credible – and it
increases over time in a comparable fashion, as does the intensity of coworker sorting. Compar-
ing across establishment size groups, there is no evident sign of a bias, in that the magnitude of
the estimates for complementarity and sorting do not vary systematically with establishment
size. Indeed, the joint rise in complementarity in sorting is consistently observed across all
specifications.

C Quantitative analysis

C.1 Methodology

C.1.1 Labor market transition rates from the LIAB

This section describes how the empirical labor market transition rates that discipline the job
arrival and destruction rates in the quantitative model are computed. As a data source, I supple-
ment the SIEED with the Linked Employer Employee Data longitudinal model (LIAB LM7519),
which contains information also on non-employment spells. I proceed in four main steps. First,
I convert the spell-level data into a monthly panel. Second, I restrict the sample to approximate
the selection criteria used in the other empirical analysis but without being limited to full-time
employees. Specifically, I select individuals aged 20-60 who only ever worked for establishments
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Figure B.11: Coworker complementarity and sorting estimates by establishment size

Notes. This figure indicates empirical estimates of the coworker correlation (panels (b) and (d)) and coworker
complementarity (panels (a) and (c)) when estimated separately for 5 sample periods and for 4 different estab-
lishment size groups. “Coworker complementarity” corresponds to the point estimate of the coefficient on the
interaction term, �̂2 , in regression (38). In panels (a) and (b), the estimation sample comprises all establishments,
whereas panels (c) and (d) are based on the subsample of ‘panel establishments’ for which the SIEED dataset
contains information on all employees. The underlying worker types are estimated from a pooled sample across all
establishment size groups, as in the remainder of the paper.
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in West Germany. Third, in the construction of transition rates I largely follow Jarosch (2023).
Employment refers to full-time employment subject to Social Security. The job finding rate is
computed as the rate at which currently non-employed workers who are receiving unemploy-
ment insurance (UI) transition into employment. For the job destruction rate, I compute the
frequency with which a worker is employed in one month but not in the month thereafter. Note
that here I do not condition on receiving UI after separation, as the model does not distinguish
between unemployment and non-employment. I instead define the job finding rate based on un-
employment to employment transitions, since the model does assume search effort conditional
on non-employment. Finally, for job-to-job transitions I compute the rate at which currently
employed workers are employed at another establishment the following month. In step four,
I compute averages of these different transition rates across months and for different sample
periods.

C.1.2 Validation of identification approach

To validate the identification of the vector of jointly estimated parameters, #, I conduct two
exercises, following Bilal et al. (2022). First, to support the argument laid out in the main text
that each element of # is closely linked to a particular moment, Figure C.1 plots the relevant
moment against the respective parameter. As required for local identification, the relationships
are monotonic and exhibit significant amount of variation. For the second exercise, let a given
parameter #8 vary around the estimated value #∗

8
and plot the distance function G(#8 ,#∗−8),

where the remaining parameters are allowed to adjust to minimize G. Figure C.2 indicates that
G(#8 ,#∗−8) has a steep U-shape, suggesting that # is indeed well-identified.

C.1.3 Between-share adjustment procedure

Since in the structural model the number of workers in each production unit is two, the between-
unit share of the variance of wages – or, for that matter, that of types – will be greater than zero
even under random matching. More generally, for any degree of coworker sorting less than
unity, i.e. �GG < 1, the level of the between-share in a model with team size = = 2 will be biased
upward relative to the case of = > 2 and, in particular, = →∞. These observations are simply
an outgrowth of the law of large numbers not applying within production units. As such, it is
a statistical phenomenon rather than an economically interesting mechanism. Furthermore,
the upward bias is greater when the coworker correlation is lower. One can immediately verify
this result intuitively by noting that for �GG = 1, all dispersion is across and none within units,
regardless of the value of =. Figure C.3 illustrates these ideas graphically (its construction is
described below).

This statistical bias has two implications. First, without any further adjustment, the level of
the between-share predicted by the estimated model, which assumes = = 2, will be excessively
high relative to the real world, in which < > 2. Second, insofar as the estimated model predicts
greater stronger coworker sorting than the earlier period, the predicted increase in the between-
share of wage inequality is a lower bound, because the statistical upward bias in the later period
will be smaller than in the later period. This section proposes an approach to correct the level of
the between-share, but all results for changes over time that are reported in the main text are a
conservative estimate, insofar as I apply the same correction factor to both periods.

107



0.4 0.42 0.44 0.46

Elasticity of complementarity

3.2

3.4

3.6

3.8

4

A
vg

. c
ro

ss
-p

ar
tia

l d
er

iv
at

iv
e

#10 -3

0.36 0.38 0.4

Production constant

-0.06

-0.04

-0.02

0

0.02

0.04

M
ea

n 
lo

g 
w

ag
e

1.1 1.15 1.2 1.25 1.3

Quality sensitivity

0.13

0.135

0.14

0.145

0.15

0.155

0.16

V
ar

ia
nc

e 
of

 lo
g 

w
ag

es

0.16 0.17 0.18

Job arrival rate

0.13

0.135

0.14

0.145

0.15

Jo
b 

fi
nd

in
g 

ra
te

Figure C.1: Validation of identification method: moment against parameter

Notes. This figure plots the targeted moment against the relevant parameter, holding constant all other parameters.
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Figure C.2: Validation of identification method: distance criterion

Notes. This figure plots the distance function G(#8 ,#∗−8)when varying a given parameter #8 around the estimated
value #∗

8
. The remaining parameters are allowed to adjust to minimize G.
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Figure C.3: Graphical illustration of the adjustment method

Notes. This figure illustrates how the coworker correlation coefficient (left panel) and the between-firm share of
the variance of types (right panel) vary with the correlation parameter in the Gaussian copula. The different lines
represent different “team sizes,” that is, varying lengths = of the vector -. Workers are binned into ten deciles. The
results are based on one million draws.

The adjustment method I propose is based on a statistical model that can flexibly accom-
modate different degrees of coworker sorting as well as team sizes. Consider a random vector
- = (-1, -2, . . . , -=)′ whose distribution is described by a Gaussian copula over the unit hyper-
cube [0, 1]= , with an = × = correlation matrixΣ(�2), which contains ones on the diagonal, while
the off-diagonal elements are all equal to a parameter �2 . Formally, the Gaussian copula with
parameter matrixΣ(�2) is �Gauss

Σ
(G) = Φ'(Φ−1(G1), . . . ,Φ−1(G=)), whereΦ−1 is the inverse cdf

of a standard normal and Φ' is the joint cdf of a multivariate normal distribution with mean
vector zero and covariance matrix equal toΣ(�2). To map this onto our empirical context, = may
be interpreted as the average team size. Each vector of observations drawn from the distributions
of -, G 9 = (G19 , G29 , . . . , G=9)′, describes the types of workers in that team, indexed by 9.

This setup affords us with a closed-form description of the population between-team share
of the variance of types as a function of = and �2 . Since the marginals of the Gaussian copula
are simply continuous uniforms defined over the unit interval, the variance of the union of
all draws is just 1

12 . Furthermore, the mean of the elements of - is itself a random variable,

-̄. That is, for some realization G 9 , we can define Ḡ 9 =
1
=

∑=
8=1 G8 9 . Since the elements of -

all have the same variance and we specified their correlation profile, the variance of -̄ will be

1
=2

(
=
12 + =(= − 1)(

�2
12)

)
. Taking the ratio, we find that the between share, as a function of �2 and

=, is equal to �2
G,between-share(�2 , <) =

1
<

(
1 + (< − 1)�2

)
.

In the main text, and letting the empirical average size be =̂, the adjusted results for the
between-share are therefore obtained by subtracting the following correction factor: correction-factor =

1
2

(
1 + �2

)
− 1

=̂

(
1 + (=̂ − 1)�2

)
,
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The value of �2 I feed into this formula is the average coworker correlation value in the
period-1 sample.C.1 The implied value of the correction factor is approximately 0.25.

A concern with this approach is that �2 is not the same measure as the coworker correlation,
�GG , that we typically consider in both the empirical analysis and the structural model. To
compare the two measures, suppose we draw " samples (i.e., distinct teams) from -, so that
the total number of observations is " × =. Each individual observation is indexed by 8 =
1, . . . , " × =, and the sample to which 8 belongs is 9(8). Then we can define the leave-out-mean
Ḡ−8 , 9 = 1

=−1
∑
:≠8 G:,9(8). As in our main analysis, the coworker correlation is �GG = corr(G8 , Ḡ−8),

where the 9 indexed is suppressed to emphasize that we are considering a worker-weighted
statistic. Figure C.3 confirms that �GG and �22 track each other quite closely, even though for
larger values of = and intermediate values of �2 we find that �GG > �22 .C.2

Another second concern is that the adjustment approach pertains, strictly speaking, to
the between-unit share of the variance of types, as opposed to that of wages. However, given
a distribution of workers across production units derived from the statistical model, we can
impute wages based on the wage function derived from the structural model, and then repeat
the variance decomposition for wages. Simulations confirm that the two adjustment factors
obtained when looking at types and wages, respectively, are very similar to one another. Overall,
the proposed adjustment approach therefore seems to accomplish the desired goal.

C.2 Additional results and robustness checks

C.2.1 Re-estimation of model under alternative specifications

Table C.1 summarizes the parameterization of the model under the different specifications
considered in Section 5. Note that four parameters, namely �, $, 02 and � are the same across
specifications.

C.2.2 Version with on-the-job search

SETUP. This section briefly summarizes the version of the model with on-the-job search (OJS).
In terms of setup, an employed worker may now meet vacancies at a Poisson rate �4 . The
unconditional rate at which a vacancy, in turn, meets an employed worker of any type is denote
�E.4 =

�4 4
E . The equations become a bit lengthy, so I restrict myself to giving two examples, with

a complete description available upon request.

C.1I choose to base the correction on the earlier sample, yielding a bigger downward adjustment, to avoid over-
stating the degree of between-firm inequality that the model can generate without assuming ex-ante firm hetero-
geneity. In addition, I use =̂ = 15. (The exact value of =̂ does not matter much, since for reasonable values of =̂ the
implied correction factors are very close to each other. The magnitude of the bias rapidly diminishes as =̂ grows, as
is evident from the above formula.)

C.2To match the structural model as closely as possible, I binned the draws in the same way as I did in the
structural model and for empirical analyses. Of course, the statistical environment makes it possible to examine the
implications of such binning and, reassuringly, it makes little difference to the results.
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Parameter Baseline Within-occ ranking OJS OJS: constant EE rates

� 0.008
$ 0.5
02 1.1
� 0.0071 | 0.0085
� 0.434 | 0.836 0.277 | 0.537 0.233 | 0.315 0.215 | 0.728
00 0.378 | 0.238 0.397 | 0.239 0.400 | 0.274 0.397 | 0.268
01 1.216 | 1.559 1.194 | 1.566 1.216 | 1.559 1.204 | 1.550
1̄ 0.739 | 0.664 0.742 | 0.669 0.720 | 0.654 0.721 | 0.648
�D 0.168 | 0.230 0.155 | 0.214 0.152 | 0.179 0.152 | 0.189
�4 0 0 0.054 | 0.103 0.057 | 0.063

Table C.1: Model parameters: baseline and robustness

Notes. This table summarizes the parameterization of the model under alternative specifications. The value on the
left side of | is for period 1, that on the right side for period 2. Discount rate, bargaining weight, team benefit, and
separation rates are identical across specifications.

For example, the joint value of a firm and a worker of type G is now

�Ω1(G) = 51(G) − �((G)

+ (1 − $)
[ (
�E.D

∫
3D(G̃′)
D

((G̃′|G)+3G̃′
)

︸                              ︷︷                              ︸
meet unemployed

+
(
�E.4

( ∫
3<.1(G̃′)

4
{((G̃′|G) − ((G̃′)}+3G̃′ +

∫ ∫
3<.2(G̃′, G̃′′)

4
{((G̃′|G) − ((G̃′|G̃′′)}+3G̃′3G̃′′

))
︸                                                                                                                      ︷︷                                                                                                                      ︸

meet employed

]

+ $�4
( ∫

3 5 .0

E
× {((G) − ((G)}+︸            ︷︷            ︸
G joins different 0-worker firm

+
∫ ∫

3<.1(G̃′)
E

× {((G |G̃′) − ((G)}+︸                ︷︷                ︸
G joins different 1-worker firm

3G̃′
)
.

Turning to flows, in the stationary equilibrium the ‘density’ of matches consisting of a firm
with two workers of types G and G′ satisfies the following balance condition, where for instance
ℎ2.1(G, G′′|G′) = 1{((G |G′) − ((G |G′′) > 0} indicates whether a worker G in a two-worker firm
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with coworker G′′ would move to an employer that currently has one employee of type G′.

3D(G)�D
3<.1(G′)

E
ℎD.1(G |G′)

+ 3<.1(G)
{
�4
3<.1(G′)

E
ℎ1.1(G |G′) + �E.D

3D(G′)
D

ℎD.1(G′|G) + �E.4
(
3<.1(G′)

4
ℎ1.1(G′|G)

+
∫

3<.2(G′, G̃′′)
4

ℎ2.1(G′, G̃′′|G)3G̃′′
)}

+
∫

3<.2(G, G̃′′)�4
3<.1(G′)

E
ℎ2.1(G, G̃′′|G′)3G̃′′

= 3<.2(G, G′)
{
2� + �4

( ∫
3 5 .0

E
ℎ2.0(G, G′) +

∫ ∫
3<.1(G̃′′)

E
ℎ2.1(G, G′|G̃′′)3G̃′′

)
+ �4

( ∫
3 5 .0

E
ℎ2.0(G′, G) +

∫ ∫
3<.1(G̃′′)

E
ℎ2.1(G′, G |G̃′′)3G̃′′

)}
.

IMPLICATIONS FOR MATCHING PATTERNS. Figure 10 seems to indicate that the version with
OJS does a better job at capturing empirical coworker sorting patterns. Here I offer a brief
explanation. In essence, with OJS matching patterns better reflect the heterogeneity in sur-
plus across matches. Absent OJS, match outcomes do not fully reflect preferences over these
outcomes. Specifically, when the match outcome is a binary comparison of the values from
being unmatched or matched, then these outcomes do not express information about who
among the accepted matching partners I would rather match with; and who among the rejected
ones I like even less than the other. By contrast, with OJS, preferences over match outcomes
are also encoded in job-to-job transitions, which are determined by a comparison of match
surpluses at alternative employers, respectively with different coworkers. These moves thus
contain additional information about heterogeneity in surplus among the partners inside the
acceptance set coming out of unemployment. In that sense, the stationary match distribution
better reflects preferences over match outcomes.

TRADE-OFFS AND FUTURE RESEARCH. While incorporating OJS improves the model’s capacity
to fit empirical coworker sorting patterns, this comes at a twofold cost. First, unlike the baseline
model, the version with OJS predicts a level of the between-firm share of wage inequality that
exceeds what is observed in the data (even after correcting for a mechanical upward bias dis-
cussed in Appendix C.1.3). While this does not impair the model’s ability to speak to changes over
time, it does highlight a shortcoming of the model. I conjecture that this limitation partly reflects
that the model does not incorporate a vertical dimension of firm organization as in Garicano
and Rossi-Hansberg (2006), which would plausibly generate more within-firm wage dispersion.
Future work that takes serious within-firm worker heterogeneity both across and within layers of
the firm, perhaps by modelling the interaction between multiple teams, might improve on this
dimension.

The second issue relates to the mapping between production and wage complementarities
introduced in Corollary 4. While “origin” effects that differentiate workers’ in terms of their
bargaining position (e.g., unemployment vs. jobs yielding varying levels of surplus) leave this
mapping unaffected – at least under the bargaining protocol assumed here – a different issues
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arises relating to anticipation effects. Specifically, the interaction between own type and coworker
type influences the wage not only directly through the production value but also indirectly.
The indirect effect arises because the coworker match quality influences the probability that
either team member switches jobs conditional on receiving an outside offer. I next show this
more carefully. Under the assumption that wages are continuously renegotiated under Nash
bargaining, with unemployment as a worker’s outside option, it is still possible to characterize
the wage of a worker of type G employed at a firm with another worker of type G′ in closed form:

F(G |G′) = �+D(G) + (� + 2�)$((G |G′)

− $((G) ×
(
� + �4

∫
3 5 .0

E
ℎ2.0(G′, G) + �4

∫ ∫
3<.1(G̃′′)

E
ℎ2.1(G′, G |G̃′′)3G̃′′

)
− $�4

∫
3<.1(G̃′′)

E
ℎ2.1(G, G′|G̃′′)((G |G̃′′)3G̃′′

Here, the term ℎ2.1(G′, G |G̃′′) is directly shaped by ((G |G′) and similarly for ℎ2.1(G, G′|G̃′′). Hence,
%2F(G |G′)
%G%G′ moves more than proportionately with

%2 5 (G |G′)
%G%G′ insofar as �4 > 0. What underlies this

effect is the assumption that wage-setting is very forward-looking, with wages fully reflecting
already today the expected change in future values of employer and worker(s) due to future
events such as exogenous job separations or endogenous job moves. The reasoning in Hall and
Milgrom (2008), among other things, leads me to doubt the empirical force of such forward-
looking effects. But introducing a “partially myopic”, alternative wage sharing rule à la Hall and
Milgrom (2008) is difficult to reconcile with match formation being privately efficient and based
on joint surplus maximization. I view this as a potentially important albeit challenging direction
for future theoretical work, alongside an exploration of alternative bargaining protocols (e.g.,
Cahuc et al., 2006).

Of course, in the structural estimation it is still possible to treat %2F(G |G′)
%G%G′ as moment that is

highly informative about the strength of production complementarities. That is indeed how
I proceed in the re-estimation of an extended model that includes OJS. Since, however, the
estimation targets an increase in EE rates from 0.0076 to 0.0106, matching which requires a
rise in �4 , this procedure yields a smaller increase in the estimated strength of production
complementarities than the models without OJS do. The final column in Table C.1 shows that if,
instead, the EE rate is kept constant, then the model with OJS predicts an increase in � that is
very similar to the baseline model. Under this calibration, the model predicts 12.5 percentage
point increase in the between share from period 1 to period 2, of which only 2.1 points would
have occurred had the estimated value of � remained at the period-1 level. Thus, in this model
complementarities rationalize around 45% of the empirically observed rise in the between-firm
share of wage inequality, a value that is very similar to the baseline model.

C.2.3 Extension: =max = 3

In the baseline model, firms can have zero, one or, at most, two employees. The associated
assumption of extreme decreasing returns to scale setting in at =max = 2 facilitates a transparent
discussion of the key link between complementarities and matching decisions, but it is primarily
imposed for reasons of tractability. In particular, as the number of potential employees increases,
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Figure C.4: Equilibrium coworker sorting patterns when =max = 3

Notes. This figure plots the average coworker type (vertical axis) for different worker types (horizontal axis), as
implied by the equilibrium matching patterns emerging from the baseline model with maximum team size 2
(=max = 2) and the alternative model with maximum team size 3 (=max = 3).

the potential combinations of worker types and, hence, the state space explodes.
This section shows that the key model properties are robust to allowing at least for =max =

3.C.3 In particular, Figure C.4 plots the average coworker quality for different types of workers,
under alternative model specifications. Depicted in solid grey is the baseline model; in dashed
orange the model with =max = 3, considering teams of size 2 or 3; and in dashed-dotted light
orange the model with =max = 3 but considering only teams of size 2. As can be seen, the
equilibrium sorting implications are very similar when raising the maximum team size.

C.2.4 Job-to-job transitions and coworker sorting

This section documents how, in the data, workers transition across jobs characterized by different
coworker quality types. It also compares these patterns to the predictions of the calibrated version
of the model version with OJS, considering also how these movements have changed over time.

According to the theoretical model, job-to-job (EE) transitions tend to move workers in a
surplus-maximizing direction, which in the presence of coworker complementarities means
that they tend to increase sorting. Hence, the change in coworker quality (defined as ΔĜ−8C =
Ĝ−8 ,C − Ĝ−8 ,C−1), should be positively correlated with Ĝ8 .C.4

To evaluate this prediction, I first transform the spell-level version of the SIEED into a monthly
worker-originMonth-destinationMonth-originJob-destinationJob dataset, which also contains
information on the characteristics of origin and destination job, including in particular the
average coworker quality. For computer memory management purposes on the administrative

C.3The equations describing the stationary equilibrium become messier but are conceptually straightforward
extensions of the =max = 2 case.

C.4In the theoretical model, ℎ2.1(G, G′′ |G′) = 1, so that a worker G in a two-worker firm with coworker G′′ would
move to an employer that currently has one employee of type G′, if and only if ((G |G′) − ((G |G′′) > 0.
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Figure C.5: Origin-destination plot by worker type

Notes. This figure plots, for each origin coworker type (decile; horizontal axis), the average coworker destination
type (decile; vertical axis), separately for worker deciles 2, 5, and 9. Figures are averaged across 1985-1992 and
2010-2017.

data servers, I limit this analysis to the first and the last sample period, i.e., the periods 1985-1992
and 2010-2017. I then consider an individual as undergoing an EE transition if they are employed
at establishment 9 in month C and 9′ ≠ 9 in month C + 1.

Turning to the analysis, Figure C.5 describes the properties of EE transitions by worker type
in a non-parametric manner. It plots, for each worker type and origin coworker type, the average
coworker destination type, computed from the pooled sample. Consistent with the prediction of
the theoretical model, EE transitions tend to lead greater coworker sorting: for any given origin,
high-type move to workplaces with better coworkers than lower-type workers do.

Next, I use a regression approach to answer the following question: Have EE transitions
become more like to reallocate workers in a direction consistent with positively assortative
coworker matching? To this end, I regress ΔĜ−8C , scaled by the standard deviation of of coworker
quality changes, �Δ, on the worker type, controlling for origin coworker type as well as year
effects.

ΔĜ8C

�Δ
= �0 + �1Ĝ8 + �2Ĝ−8 ,C−1 + �C + &8C .

The second main column displays the model-implied coefficient of interest, �1, for both
sample periods. As complementarities have increased over time, �1 be greater in 2010-2017
than in 1985-1992. In the first main column, this prediction is empirically tested, showing that
empirically both the sign and change over time are qualitatively consistent with the theoretical
prediction. Quantitatively, the magnitude of the estimate, �̂1, lies below the model prediction
in both periods. This points to a limitation of the model, wherein all EE transitions reallocate
toward more positive sorting, whereas in the data there are also countervailing flows. To im-
prove the model’s fit with the data, incorporating match-specific productivity shocks as well as
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Data Model
Change in coworker type ’85-’92 ’10-’17 Period-1 Period-2
Own type 0.0883∗∗∗ 0.118∗∗∗ 0.214 0.270

(0.000799) (0.000918)

Controls Year FEs, Origin Year FEs, Origin Origin Origin
Obs. 196,100 282,700 ∞ ∞
Adj. '2 0.284 0.204

Table C.2: Change in coworker type due to EE moves is positively related to own type

Notes. For the data columns, individual-level clustered standard errors are given in parentheses; model counterparts
are computed simulation-free in population. The dependent variable is scaled throughout by the standard deviation
of the change in coworker type. Observation count rounded to 100s. The model parametrization is summarized in
Table C.2.1.

idiosyncratic preference shocks would be useful.

D The task content of production in Germany

To document patterns in the task content of production I draw on the Employment Surveys
(ES) carried out by the German Federal Institute for Vocational Training (Bundesinstitut fuer
Berufsbildung, BIBB; Hall and et al. (2018)).D.1 Following the influential methodology introduced
in Autor et al. (2003) and first applied to the ES by Spitz-Oener (2006), I use the tasks that
employees report to have performed to measure variations in the nature of work.

The BIBB surveys have several attractive features: they provide detailed information on
tasks performed at work; the survey has been run, in repeated waves, since 1985 (1985/86,
1991/92, 1998/99, 2006, 2012, and 2018), facilitating time series analyses; each wave has a
large sample size between 20,000 to over 30,000 respondents per wave, facilitating between-
group comparisons; responses are at the worker-level and consistent occupation codes can
be used across multiple waves, making it possible to capture changes in nature of work not
only associated with employment shifts across occupations but also within-occupation (on the
importance of which see, e.g., Spitz-Oener (2006); Atalay et al. (2020)); and a supplemental survey
in 2012 allows enriching binary task indicators with information on the actual shares of time
spent by employees in different occupations on various tasks.

The analysis uncovers several key findings, which I summarize next before discussing details:

(i) The aggregate usage share of complex tasks in workers’ activities has monotonically risen
since 1985/86; the 1990s saw a particularly sharp increase.

(ii) This trend is prevalent across different levels of education. It is not driven by occupational
employment effects either, instead the majority of the increase occurs within-occupation.

(iii) In the cross-section, the task portfolio of more educated individuals tends to be dispro-
portionately skewed toward complex tasks compared to less educated individuals. The

D.1I thank the Research Data Center of the BIBB for providing access to scientific use files as well as guidance. All
remaining errors are my own.

117



ranking of different occupations is intuitive and likewise reveals large variation in task
shares.

(iv) Cross-sectional differences are robust to using measures of time spent on different tasks.

Altogether, these results provide reassurance that the time trend is robust and not merely the
result of composition effects, and that there is substantial cross-sectional variation that can be
exploited as done in the main text.

D.1 Methodology

SAMPLE RESTRICTIONS. As detailed in Rohrbach-Schmidt and Tiemann (2013) and Hall and
Rohrbach-Schmidt (2020), time comparisons with the BIBB/IAB surveys require a standardiza-
tion of the sample basis. To that end, I follow the steps detailed in those reports and focus on
employees from West Germany, aged 15 to 65, who belonged to the labor force (defined as having
a paid employment situation) with a regular working time of at least ten hours per week.D.2 The
final sample comprises 91,152 worker-year observations.

In addition, I entirely omit the 1998/99 wave from my analysis, because the number of
activities queried in that wave is substantially lower than in the other surveys. While doing
so reduces the overall sample size, this choice avoids bias to the results due to the limited
comparability in tasks. For example, none of the activities “accommodating”, “caring”, “storing”,
“protecting”, “programming” and “cleaning” were queried in the 1998/99 survey.D.3

TASK CLASSIFICATION. As the careful discussion in Rohrbach-Schmidt and Tiemann (2013)
makes clear, comparisons over task intensities using the BIBB ES over time need to be imple-
mented carefully and account for variation over time in what tasks are queried and whether their
content has changed in meaning. Writing in the context of typical studies that compare task
items in the categories non-routine analytical, non-routine interactive, non-routine manual,
routine-cognitive and routine-manual, the authors highlight in particular that routine-cognitive
tasks are difficult to classify (e.g. “measuring” may be routine-cognitive or routine-manual; also
see the findings of Antonczyk et al. (2009) in comparison to those by Spitz-Oener (2006)).D.4

Given my focus on non-routine or complex tasks, these classification problems are less severe
though, as “these items are regularly observable throughout the cross-sections, their content did
not change significantly from year to year, and measurement validity is comparatively strong,”
as Rohrbach-Schmidt and Tiemann (2013) note when suggesting to researchers to focus on the
increase in these tasks.

As summarized in Table D.1, I therefore collect task items in the index of abstract tasks —
guided by the classification of non-routine tasks in Spitz-Oener (2006), Rohrbach-Schmidt and

D.2In addition, I drop observations who report having performed none of the activities queried in at least two waves.
Given the extensive use of occupational codes, I also drop any occupations with fewer than thirty observations
across all waves.

D.3I thank Daniela Rohrbach-Schmidt for her generous advice on how to handle the older waves and for sharing
programs illustrating how the scientific use files can be rendered maximally consistent with the original data.

D.4Autor and Handel (2013) also treat the “physical” dimension of tasks as a combined measure of physical and
routine tasks. Meanwhile, Acemoglu and Autor (2011) subsume non-routine analytical and non-routine interactive
into “abstract”, while routine-cognitive and routine-manual tasks are subsumed into “routine”.
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Task classification Task name Description

Complex/abstract investigating Gathering information, investigating,
documenting

organizing Organizing, making plans, working out
operations, decision making

researching Researching, evaluating, developing,
constructing

programming Working with computers, programming
teaching Teaching, training, educating
consulting Consulting, advising
promoting Promoting, marketing, public relations

Other repairing, buying, ac-
commodating, caring,
cleaning, protecting,
measuring, operat-
ing, manufacturing,
storing, writing, calcu-
lating

Table D.1: Classification of tasks in the BIBB Employment Surveys

Notes. This table summarizes the classification of tasks into two groups: “Complex/abstract” and ”Other.”

Tiemann (2013) and Atalay et al. (2020) – and compare those with all other tasks, i.e., those that
are broadly categorized as routine or manual.D.5

TASK INDEX. Given this classification, I then define an index capturing the usage of abstract/-
complex tasks for worker 8 in period C, following Antonczyk et al. (2009):

)abstract
8C =

number of activities performed by 8 in task category "abstract" in sample year C

total number of activities performed by 8 in sample year C

To illustrate, if worker 8 performs five distinct activities in sample period C and two of those
belong to the category of abstract/complex tasks, then the complexity index for her work is 0.4.

OCCUPATIONAL CLASSIFICATION. To ensure a consistent classification of occupations when
using information from multiple waves, I use the German Classification of Occupations 1988
(KldB88). As the oldest classification available in the two most recent waves (2012 and 2018) is
the KldB92 classification (Hall and Rohrbach-Schmidt, 2020, cf. Table 9), in processing these
two waves I rely on a conversion table KldB92→KldB92; the conversion quality is high as the two
classifications are very similar.D.6

D.5I do not use the task items “managing”, “applying law” and “negotiating”, because they are only measured in the
early waves. Moreover, I associate buying/selling with “other”, since even though they may be hard to automate
(even that seems questionable in light of self-checkouts and e-commerce), they are arguably not among the most
complex activities. This decision makes no practical difference to the results.

D.6This crosswalk is based on the Klassifikationsserver der Statistischen Ämter des Bundes und der Länder, current
occupations coded in the 2006 wave in which both KldB88 and KldB92 are available as well as personal judgements.
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Total Between Within Within-share

1986 level 0.252

1986-1992 0.025 0.002 0.022 0.906
1992-2006 0.298 0.057 0.241 0.809
2006-2012 0.019 0.002 0.017 0.890
2012-2018 0.053 0.028 0.025 0.476

Total change 0.395 0.089 0.306 0.775

Table D.2: The evolving task content of production in Germany

Notes. This table reports the within-between occupation decomposition of the change in the share of complex tasks
over time. The “Total” column aggregates across all individuals. The decomposition is performed at the level of
KldB-1988 2-digit occupations.

D.2 Results

PATTERNS OVER TIME. The first column in Table D.2 indicates that the aggregate usage share of
complex tasks in workers’ activities has monotonically increased from 1986 to 2018, with the
increase being particularly pronounced in the first half of the time period.

The second to fourth columns decompose the period-by-period change in the importance of
complex tasks into two components: a “between” component that captures shifts in occupational
employment shares and a “within” component that measures changes in the task content within
occupations. Formally, as in Atalay et al. (2020), I decompose changes in the usage of abstract
tasks between periods C and C − 1 according to the equation

Δ)̄
complex
C =

∑
>

$>,C−1()̄abstract
C ,> − )̄complex

C−1,> ) +
∑
>

($>,C − $>,C−1))̄abstract
C ,>

where )̄complex
C ,> measures the average usage of complex tasks by members of occupation > in

period C and $>,C is the period- C employment share of occupation >.
Consistent with the findings of Atalay et al. (2020) for the US, this decomposition reveals

that about three quarters of the increase in complex tasks over the sample period have occurred
within occupations.

Education offers an alternative lens through which to view the changing task content. As
shown already in Figure 2a in the main text, the share of complex tasks in the portfolio of
university-educated individuals is substantially greater than that of persons with less formal
education. The increase over time takes place across the board, however.

CROSS-SECTIONAL PATTERNS. The share of complex tasks also varies substantially by occu-
pation. I compute the average complex-task shares at the ISCO-08 2-digit level in the waves
2012 and 2018. Table D.3 lists the bottom 5 and top 5 occupations. In addition, I also show the
non-routine abstract score from Mihaylov and Tijdens (2019) used in Section 4.3. The compari-
son reveals large and consistent variation in task shares across occupations according to either
measure.

TIME USAGE. One concern is that the analysis only considered whether a given task represents

I thank Anett Friedrich for creating and sharing the crosswalk.
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ISCO-08 2-digit occupation )̄
complex
> MT-NRA

Business and administration professionals 0.84 0.47
Legal, social and cultural professionals 0.83 0.67
Business and administration associate professionals 0.82 0.29
Teaching professionals 0.81 0.57
Administrative and commercial managers 0.81 0.58
... ... ...
Drivers and mobile plant operators 0.2 0
Agricultural, forestry and fishery labourers 0.14 0
Food preparation assistants 0.14 0
Market-oriented skilled forestry, fishery and hunting workers 0.12 0
Cleaners and helpers 0.12 0

Table D.3: Top- and bottom-5 occupations in terms of task complexity

Notes. This table reports the top-5 and bottom-5 ISCO-08 2-digit occupations when ranked by )̄complex
> in pooled

2012 and 2018 waves. The column “MT-NRA” shows the non-routine abstract score taken from Mihaylov and
Tijdens (2019) after collapsing to the ISCO-08-2d level using occupational employment shares (computed using the
Portuguese data, in lne with the application in Section 4.3.

Quartile 1 Quartile 2 Quartile 3 Quartile 4
0
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Organizing
Researching
Programming
Teaching
Consulting
Promoting

Figure D.1: Allocation of time to complex tasks by occupational groups

Notes. This table reports the share of time spent on complex tasks by different occupational groups. Occupations
are first ranked according to their task complexity index and grouped into four groups of approximately equal
size. Then the average share of time members of these occupational groups spend on the various tasks labelled as
“complex” in Table D.1 is computed.
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an important activity in the respondent’s job, as opposed to measuring how important that
activity is relative to others. To address this concern, I draw on a supplemental survey from 2012
that precisely details the amount of time a subset of workers spent on the different tasks on a
given day. Figure D.1 charts the shares of time spent on the seven abstract/complex activities for
different occupational groups. Specifically, I rank occupations according to their task index and
group them into 4 equally sized groups. Drawing on the supplemental survey, I then compute
the average share of time members of these occupational groups spent on the various tasks.
Figure D.1 shows that at least in more recent periods, each occupational group spends some
time on such tasks as organizing or using the computer (“programming”). Crucially, the fraction
of time spent on each of these tasks is multiples greater for the top quartile than for the bottom
quartile. No one single task drives the overall increase in the complexity index.
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