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E Theoretical appendix II

E.1 Brown-Resnick model for skills

The main text uses Fréchet marginals together with a Gumbel-Hougaard copula with

distance-dependent parametrization to capture correlation of skills across pairs of work-

ers. This approach is highly tractable but leaves open the question how to generalize it,

in the sense of constructing the joint distribution for 𝑛 > 2 Fréchet random variables

with distance-dependent association. This section sketches an approach that relies on

constructing a spatial, max-stable model for the skills process. See Davison et al. (2019)

for a survey of models of spatial extremes. To introduce the ideas, and without loss of

generality, I work with a unit Fréchet shape parameter (Resnick, 1987, Proposition 5.11).

Suppose skills are the realizations of a non-negative random field {𝑍(𝑠) : 𝑠 ∈ 𝒞},

where 𝒞 = ℛ × R+ is a cylinder, with 𝜇 ∈ ℛ = [0, 2) representing the circular coordinate

and ℎ ∈ R+ denoting height. We interpret 𝑠 = (𝜇, ℎ) ∈ 𝒞 as the latent position of an

individual worker. As in the main text, the distance function is defined on the circle as

𝑑 : ℛ × ℛ → R+

𝑑𝑖𝑙 = 𝑑(𝜇𝑖 , 𝜇𝑙) = min{|𝜇𝑖 − 𝜇𝑙|, 2 − |𝜇𝑖 − 𝜇𝑙|}.

The field 𝑍(𝑠) is constructed as

𝑍(𝑠) = 𝑥(ℎ)�̃�(𝜇), 𝑠 = (𝜇, ℎ) ∈ 𝒞 .

where �̃�(𝜇) is a Brown-Resnick max-stable process (Brown and Resnick, 1977) and 𝑥(ℎ) >
0 the height-dependent Fréchet scale parameter.

Under the de Haan spectral representation (De Haan (1984), also see Kabluchko et al.

(2009)), this process can be written as

�̃�(𝜇) = max
𝑖≥1

𝜁𝑖𝑊𝑖(𝜇), 𝜇 ∈ ℛ,

§Email: lukas.beat.freund@gmail.com. Web: www.lukasfreund.com.

Supplemental Appendix - p.1

mailto:lukas.beat.freund@gmail.com
https://www.lukasfreund.com/home


where {𝜁𝑖} are points of a Poisson process on (0,∞) with intensity 𝜁−2𝑑𝜁;𝑊𝑖(𝜇) are inde-

pendent copies of the spectral function𝑊(𝑟) = exp{𝜀(𝜇)−𝜚(𝜇)}, where 𝜀(𝜇) is a station-

ary Gaussian process with mean zero and stationary increments; and the semi-variogram

𝜚(𝜇1, 𝜇2) determines dependence and is isotropic, i.e., 𝜚(𝜇1, 𝜇2) = 𝜚(𝑑(𝜇1, 𝜇2)).
By construction, the process �̃�(𝑟) has unit Fréchet marginals:

𝑃(�̃�(𝜇) ≤ 𝑧) = exp(−𝑧−1), 𝑧 > 0.

Furthermore, for a max-stable random vector with unit Fréchet margins, the 𝑑-

dimensional joint distribution can be written as

Pr(𝑍1 ≤ 𝑧1, . . . , 𝑍𝑑 ≤ 𝑧𝑑) = exp{−𝑉(𝑧1, . . . , 𝑧𝑑)}, 𝑧𝑖 > 0,

where𝑉(𝑧1, . . . , 𝑧𝑑) is called the exponent function and is homogeneous of order −1.E.1

In the Brown-Resnick model, for any pair of locations {𝑠1, 𝑠2} ⊂ 𝒞 the bivariate

exponent function is
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where 𝑎2 = 𝜚(𝑑(𝜇1, 𝜇2)). Huser and Davison (2013) provide expressions for 𝑉 in the

higher-dimensional case.

Writing down an explicit model for the max-stable skills process ensure that the finite-

dimensional marginal are max-stable with coherent dependence structure. Moreover, the

aggregation properties summarized in Lemma A.3 obtain for a max-stable skills process

under mild restrictions, yielding a system of equations that can be solved for output

𝑌 produced by a team of 𝑛 workers given knowledge of their locations (𝑠1, ..., 𝑠𝑛). The

Gumbel copula distinctively has an 𝐿𝑝-norm like structure, so the partial derivatives are

power functions, which leads to factorable forms that yield a closed-form expression

for 𝑓 (·). While deriving such an explicit expression is not feasible more generally, as

already noted in the Appendix O, in finite samples the Hüsler–Reiss copula is statistically

indistinguishable from the Gumbel copula.

E.1Relating this to the notion of a copula, an extreme-value copula 𝐶 can be written as 𝐶(𝑢1 , ..., 𝑢𝑑) =
exp{−𝐺(− log 𝑢1 , ...,− log 𝑢𝑑)}, ; 𝑢𝑖 ∈ (0, 1), where𝐺 is the tail dependence function and homogeneous of
degree 1. By the probability integral transform, for Fréchet margins, we have𝑉(𝑧1 , ..., 𝑧𝑑) = 𝐺( 1

𝑧1
, ..., 1

𝑧𝑑
).

See Appendix O A.1.2 for an expression for 𝐺 in the case of the Gumbel copula.
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F Empirical appendix II

F.1 Constructing worker types

My baseline measure of worker talent types is based on their position in the economy-

wide lifetime earnings distribution, which I recover from the individual fixed effect (FE)

in a two-way fixed-effects wage regression à la Abowd et al. (1999, “AKM” henceforth). It

bears emphasis that in this paper I am not concerned with the estimation of employer

FEs or an AKM-based variance decomposition, so prominent debates in the literature

about the structural interpretation of these terms can be side-stepped. Instead, I simply

adopt this approach as a statistical tool to recover the time-invariant component of

an individual’s earnings ability that conveniently allows controlling for the effects of

unmodelled person-level observable characteristics and employer heterogeneity.

Estimation concerns that relate to limited mobility bias affecting pertain to the esti-

mation of employer FEs, and specifically their variance (as well as a the covariance term)

are less relevant for person FEs. Nonetheless, to follow best practices, I initially cluster

similar firms through a weighted k-means problem, similar to Bonhomme et al. (2019),

min
𝑘(1),...,𝑘(𝐽),𝐻1 ,...,𝐻𝐾

𝐽∑
𝑗=1

𝑛 𝑗

∫
(�̂�𝑗(𝑤) − 𝐻𝐾 𝑗 (𝑤))2𝑑𝜇(𝑤), (F.1)

where 𝑘(1), ..., 𝑘(𝐽) constitutes a partition of firms into 𝐾 known classes.F.1

After imputing a cluster to each worker-year observation, I estimate the regression

�̃�𝑖𝑡 = 𝛼𝑖 +
𝐾∑
𝑘=1

𝜓𝑘1(𝑗(𝑖 , 𝑡) = 𝑘) + 𝑋′
𝑖𝑡𝛽 + 𝜖𝑖𝑡 (F.2)

where 𝛼𝑖 is the individual fixed effect, 1(𝐽(𝑖 , 𝑡) = 𝑘) are dummies indicating which cluster

𝑘 firm the employer of 𝑖 in period 𝑡, 𝑗(𝑖 , 𝑡) has been assigned to, and 𝑋𝑖𝑡 is the same

vector of time-varying controls as in the preceding section B.1.1.F.2 The estimation is

F.1Here, �̂�𝑗 is the empirical cdf of log-wages in firm 𝑗; 𝑛 𝑗 is the average number of workers of firm 𝑗 over the
sample period; and 𝐻1 , ...., 𝐻𝐾 are generic cdf’s. I use a baseline value of 𝐾 = 20 but have experimented
with 𝐾 = 10 and 𝐾 = 100 as well; the choice makes little practical difference. I use firms’ wage distributions
over the entire sample period on a grid of 20 percentiles for clustering.

F.2While residualizing wages for observables aligns with the model’s exclusion of life-cycle and on-the-job
learning effects, it is not self-evident that worker types should likewise be computed from residualized
wages. It could be argued, for instance, that for the interpretation of the production function it matters, for
example, whether a worker is good,” not whether they are good for their age.” I include controls to maintain
maximum consistency, both internally and with respect to the existing literature. A previous version
(Freund, 2023) reported results when worker types are constructed without controlling for observables;
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implemented in Stata using the reghdfe package (Correia, 2017).

I estimate this regression separately for each of the 5 sample periods, then equate

worker 𝑖’s type �̂�𝑖 with their decile rank in the distribution of 𝛼𝑖 . Note that I thus allow for

the possibility of human capital accumulation across but not within sample periods. In

the data, the auto-correlation structure for period-specific 𝛼𝑖 , exhibits a strongly positive

though less than unit correlation.

F.2 Labor market transition rates from the LIAB

This section describes how the empirical labor market transition rates that discipline the

job arrival and destruction rates in the quantitative model are computed. As a data source,

I supplement the SIEED with the Linked Employer Employee Data longitudinal model

(LIAB LM7519), which, unlike the SIEED, contains information on non-employment

spells.

I proceed in four main steps. First, I convert the spell-level data into a monthly panel.

Second, I restrict the sample to approximate the selection criteria used in the other

empirical analysis but without being limited to employed persons, i.e., I select individuals

aged 20-60 who only ever worked for establishments in West Germany. Third, in the

construction of transition rates I largely follow Jarosch (2023). Employment refers to

full-time employment subject to Social Security. The job finding rate is computed as

the rate at which currently non-employed workers who are receiving unemployment

insurance (UI) transition into employment. For the job destruction rate, I compute

the frequency with which a worker is employed in one month but not in the month

thereafter. Note that here I do not condition on receiving UI after separation, as the

model does not distinguish between unemployment and non-employment. I instead

define the job finding rate based on unemployment to employment transitions, since the

model does assume search effort conditional on non-employment. Finally, for job-to-job

transitions I compute the rate at which currently employed workers are employed at

another establishment the following month. In step four, I compute averages of these

different transition rates across months and for different sample periods.

differences to the baseline were minimal.
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Figure F.1: Industry-level log wage variance decomposition

Notes. All results are based on the baseline measure of residualized log wages and are weighted by person-
years.

F.3 Further industry-level results

Log wage variance decomposition. Figure 4a decomposes the yearly total log wage

variance into between-establishment and within-establishment components. Figure F.1

supplements this analysis by considering the role of industry differences. I decompose

the variance of log wages into three components: between-industry, within-firm within-

industry, and between-firm within-industry.

Figure F.1a shows the year-by-year decomposition of the within-industry variance

into between- and within components. Figure F.1b depicts the total between-firm share

of the variance of log wages (i.e., the fraction of total variance due to both between-

industry and between-firm within-industry components), while the dashed line shows

the share of the within-industry wage variance due to the between-firm within-industry

component. Unsurprisingly, between-firm wage differences play a somewhat smaller

role when controlling for industry (dashed line) compared to the economy-wide analysis

(solid line). The rise captured by the dashed line clearly indicates, however, that the

between-employer share has risen also within industry.

Industry-level correlations. The binscatter plots in Figures 1b and 1c are constructed

controlling for period FEs, i.e., relying on cross-industry within-period variation. Figure

F.2 reports the relationship between the task-complexity proxy for 𝜒 and 𝛽𝑐 , as well as

between 𝛽𝑐 and coworker sorting 𝜌𝑥𝑥 , when including industry FEs instead, i.e., relying

on within-industry variation over time. As can be seen, the implied positive relationships
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Figure F.2: Industry-level evidence: within-industry variation

Notes. This figure contains binscatter plots controlling for industry fixed effects.

are comparable to those reported in the main text.

Further, Figure F.3 demonstrates that these positive relationships can be observed

also when worker types are constructed based on within-occupation rankings.

Industry-level statistics. Lastly, Table F.1 reports industry-level statistics averaged

across sample periods.
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Figure F.4: Task complexity and estimated skill specificity 𝜒

Notes. This figure shows the estimated value of 𝜒 for each industry, plotted against task complexity. In

a first step, I repeat the online estimation of the parameter vector 𝜓, targeting average within-industry

moments for 2010-2017. In a second step, I estimate industry-specific values of 𝜒, denoted 𝜒𝑠 , by keeping

all other parameters fixed and letting only the targeted moment 𝛽𝑐 vary.
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(b) 𝛽𝑐 vs. 𝜌𝑥𝑥 (within-period)
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(c) Task complexity vs. 𝛽𝑐 (within-industry)
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(d) 𝛽𝑐 vs. 𝜌𝑥𝑥 (within-industry)

Figure F.3: Industry-level evidence: within-occupation ranking

Notes. This figure contains binscatter plots where worker talent types are based on within-occupation
rankings. The top two panels include sample-period FEs; the bottom two instead include industry FEs.
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Industry Obs. Wage var. Between-share 𝜌𝑥𝑥′ 𝛽𝑐(×100) Task complexity

Manufacture of food products 495128 0.15 0.40 0.31 0.50 0.30
Manufacture of textiles 22770 0.12 0.34 0.25 0.43 0.22
Printing and reproduction of r... 27501 0.13 0.35 0.36 0.35 0.35
Manufacture of chemicals and c... 187130 0.17 0.40 0.40 0.41 0.40
Manufacture of basic pharmaceu... 35111 0.19 0.30 0.32 0.54 0.46
Manufacture of rubber and plas... 194399 0.12 0.30 0.30 0.17 0.27
Manufacture of other non-metal... 58795 0.14 0.38 0.30 0.60 0.31
Manufacture of basic metals 290696 0.09 0.22 0.28 0.17 0.29
Manufacture of fabricated meta... 489184 0.11 0.31 0.31 0.17 0.28
Manufacture of computer, elect... 499144 0.20 0.36 0.30 0.47 0.43
Manufacture of electrical equi... 212468 0.15 0.31 0.28 0.26 0.34
Manufacture of machinery and e... 1085632 0.12 0.29 0.32 0.27 0.35
Manufacture of other transport... 104808 0.14 0.38 0.30 0.68 0.42
Manufacture of furniture 79884 0.11 0.32 0.35 0.26 0.26
Other manufacturing 32926 0.18 0.44 0.37 0.35 0.36
Repair and installation of mac... 62597 0.16 0.43 0.35 0.51 0.37
Construction of buildings 295761 0.12 0.45 0.35 0.61 0.28
Civil engineering 117780 0.11 0.39 0.32 0.55 0.27
Specialised construction activ... 371579 0.12 0.38 0.33 0.33 0.29
Wholesale and retail trade and... 241568 0.16 0.35 0.35 0.32 0.37
Wholesale trade, except of mot... 990941 0.18 0.45 0.36 0.54 0.41
Retail trade, except of motor ... 676353 0.15 0.37 0.29 0.51 0.39
Land transport and transport v... 88234 0.09 0.55 0.52 0.26 0.21
Warehousing and support activi... 573032 0.11 0.35 0.35 0.33 0.31
Food and beverage service acti... 90756 0.17 0.34 0.21 0.36 0.25
Publishing activities 89965 0.13 0.24 0.21 0.28 0.56
Telecommunications 69529 0.13 0.37 0.34 0.64 0.49
Computer programming, consulta... 284500 0.19 0.38 0.38 0.49 0.59
Legal and accounting activitie... 145238 0.23 0.38 0.39 0.45 0.63
Activities of head offices; ma... 437119 0.20 0.41 0.32 0.60 0.51
Architectural and engineering ... 212346 0.18 0.38 0.41 0.39 0.59
Scientific research and develo... 23883 0.16 0.19 0.20 -0.40 0.53
Rental and leasing activities 10346 0.18 0.47 0.28 0.69 0.38
Employment activities 577282 0.13 0.43 0.24 0.22 0.26
Security and investigation act... 41017 0.10 0.31 0.21 0.21 0.29
Services to buildings and land... 146923 0.21 0.49 0.34 0.32 0.20
Office administrative, office ... 72014 0.30 0.61 0.32 0.54 0.48
Human health activities 520082 0.17 0.15 0.19 -0.21 0.42

Table F.1: Industry statistics

Notes. This table reports lists industry-level statistics averaged across all sample periods. stands for the
between-establishment share of the total log wage variance. Only industries for which the 𝛽𝑐 estimate is
statistically significant at 5% are shown.
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F.4 The task content of production in Germany

This section provides further details on the construction, patterns, and trends in task

complexity, based on the Employment Surveys (ES) carried out by the German Federal

Institute for Vocational Training (Bundesinstitut fuer Berufsbildung, BIBB; Hall and et al.

(2018)).F.3

The BIBB surveys have several attractive features. They provide detailed information

on tasks performed at work. The survey has been fielded, in repeated waves, since

1985 (1985/86, 1991/92, 1998/99, 2006, 2012, and 2018), facilitating time series analyses.

Each wave has a large sample size of between 20,000 and over 30,000 respondents per

wave, facilitating between-group comparisons. Responses are at the worker-level, and

consistent occupation codes can be used across multiple waves, making it possible to

capture changes in the nature of work not only associated with employment shifts across

occupations but also within-occupation changes (see, e.g., Spitz-Oener (2006); Atalay

et al. (2020)). Moreover, a supplemental survey in 2012 allows for enriching binary task

indicators with information on the actual shares of time spent by employees in different

occupations on various tasks.

F.4.1 Methodology

Sample restrictions. As detailed in Rohrbach-Schmidt and Tiemann (2013) and Hall

and Rohrbach-Schmidt (2020), time comparisons with the BIBB/IAB surveys require

standardization of the sample basis. I follow the steps detailed in those reports and

focus on employees from West Germany, aged 15 to 65, who belonged to the labor force

(defined as having a paid employment situation) with a regular working time of at least

ten hours per week.F.4 The final sample comprises 91,152 worker-year observations.

I omit the 1998/99 wave from my analysis because the number of activities queried

in that wave is substantially lower than in the other surveys. While this reduces the

overall sample size, it avoids bias in the results due to limited comparability in tasks.

For example, none of the activities "accommodating," "caring," "storing," "protecting,"

"programming," and "cleaning" were queried in the 1998/99 survey.F.5

F.3Access was provided by the Research Data Center of the BIBB through scientific use files.
F.4In addition, I drop observations for workers who report having performed none of the activities queried

in at least two waves. Given the extensive use of occupational codes, I also drop any occupations with fewer
than thirty observations across all waves.

F.5I thank Daniela Rohrbach-Schmidt for her generous advice on how to handle the older waves and for
sharing useful programs.
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Task classification. As Rohrbach-Schmidt and Tiemann (2013) make clear, comparisons

of task intensities using the BIBB ES over time need to be implemented carefully and

must account for variation over time in what tasks are queried and whether their content

has changed in meaning. In the context of typical studies that compare task items in the

categories non-routine analytical, non-routine interactive, non-routine manual, routine-

cognitive, and routine-manual, the authors highlight that routine-cognitive tasks are

particularly difficult to classify (e.g., "measuring" may be routine-cognitive or routine-

manual; see also Antonczyk et al. (2009) compared to Spitz-Oener (2006)).F.6 Given

my focus on complex tasks, these classification problems are less severe. As Rohrbach-

Schmidt and Tiemann (2013) note, "these items are regularly observable throughout

the cross-sections, their content did not change significantly from year to year, and

measurement validity is comparatively strong."

Table B.1 summarizes which tasks are classified as “complex tasks,” following Spitz-

Oener (2006) and Rohrbach-Schmidt and Tiemann (2013), and compare those with all

other tasks.F.7

Task index. I define an index capturing the usage of abstract/complex tasks for worker

𝑖 in period 𝑝, following Antonczyk et al. (2009):

𝑇abstract
𝑖𝑝 =

number of activities performed by 𝑖 in task category "abstract" in sample period 𝑝

total number of activities performed by 𝑖 in sample period 𝑝

To illustrate, if worker 𝑖 performs five distinct activities in 𝑝 and two of those belong

to the category of abstract/complex tasks, then the complexity index for her work is 0.4.

Occupational classification. To ensure a consistent classification of occupations when

using information from multiple waves, I use the German Classification of Occupations

1988 (KldB88). As the oldest classification available in the two most recent waves (2012

and 2018) is the KldB92 classification (Hall and Rohrbach-Schmidt, 2020, cf. Table 9), in

processing these two waves I rely on a conversion table KldB92→KldB92; the conversion

quality is high as the two classifications are very similar.F.8

F.6Autor and Handel (2013) also treat the "physical" dimension of tasks as a combined measure of physical
and routine tasks. Meanwhile, Acemoglu and Autor (2011) subsume non-routine analytical and non-
routine interactive into "abstract," while routine-cognitive and routine-manual tasks are subsumed into
"routine."

F.7I do not use the task items "managing," "applying law," and "negotiating," because they are only
measured in the early waves. Moreover, I associate buying/selling with "other," since even though these
tasks may be hard to automate, they are arguably not among the most complex activities. This decision
makes no practical difference to the results.

F.8This crosswalk is based on the Klassifikationsserver der Statistischen Ämter des Bundes und der Länder,
current occupations coded in the 2006 wave in which both KldB88 and KldB92 are available as well as
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Total Between Within Within-share

1986 level 0.252

1986-1992 0.025 0.002 0.022 0.906
1992-2006 0.298 0.057 0.241 0.809
2006-2012 0.019 0.002 0.017 0.890
2012-2018 0.053 0.028 0.025 0.476

Total change 0.395 0.089 0.306 0.775

Table F.2: The evolving task content of production in Germany

Notes. This table reports the within-between occupation decomposition of the change in the share of
complex tasks over time. The “Total” column aggregates across all individuals. The decomposition is
performed at the level of KldB-1988 2-digit occupations.

F.4.2 Results

Time trends. The first column in Table F.2 indicates that the aggregate usage share of

complex tasks in workers’ activities has monotonically increased from 1986 to 2018, with

the increase being particularly pronounced in the first half of the time period.

The second to fourth columns decompose the period-by-period change in the im-

portance of complex tasks into two components: a “between” component that captures

shifts in occupational employment shares and a “within” component that measures

changes in the task content within occupations. Formally, as in Atalay et al. (2020), I

decompose changes in the usage of abstract tasks between periods 𝑡 and 𝑡 − 1 according

to the equation

Δ�̄�
complex
𝑡 =

∑
𝑜

𝜔𝑜,𝑡−1(�̄�abstract
𝑡 ,𝑜 − �̄�complex

𝑡−1,𝑜 ) +
∑
𝑜

(𝜔𝑜,𝑡 − 𝜔𝑜,𝑡−1)�̄�abstract
𝑡 ,𝑜

where �̄�complex
𝑡 ,𝑜 measures the average usage of complex tasks by members of occupation

𝑜 in period 𝑡 and 𝜔𝑜,𝑡 is the period- 𝑡 employment share of occupation 𝑜.

Consistent with the findings of ? for the US, this decomposition reveals that about

three quarters of the increase in complex tasks over the sample period has occurred

within occupations.

Education offers an alternative lens through which to view the changing task content.

Figure 3ashowed that the share of complex tasks in the portfolio of university-educated

individuals is substantially greater than that of persons with less formal education. The

increase over time takes place across the board, however.

personal judgements. I thank Anett Friedrich for creating and sharing the crosswalk.
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Occupation �̄�
complex
𝑜 MT-NRA

Business and administration professionals 0.84 0.47
Legal, social and cultural professionals 0.83 0.67
Business and administration associate professionals 0.82 0.29
Teaching professionals 0.81 0.57
Administrative and commercial managers 0.81 0.58
... ... ...
Drivers and mobile plant operators 0.2 0
Agricultural, forestry and fishery labourers 0.14 0
Food preparation assistants 0.14 0
Market-oriented skilled forestry, fishery and hunting workers 0.12 0
Cleaners and helpers 0.12 0

Table F.3: Top- and bottom-5 occupations in terms of task complexity

Notes. This table reports the top-5 and bottom-5 ISCO-08 2-digit occupations when ranked by �̄�complex
𝑜

in pooled 2012 and 2018 waves. The column “MT-NRA” shows the non-routine abstract score taken from
Mihaylov and Tijdens (2019) after collapsing to the 2d level using occupational employment shares.

Cross-sectional patterns. The share of complex tasks also varies substantially by oc-

cupation. I compute the average complex-task shares at the ISCO-08 2-digit level in the

waves 2012 and 2018. Table F.3 lists the bottom 5 and top 5 occupations. I also show

the non-routine abstract score from Mihaylov and Tijdens (2019). The comparison re-

veals large and consistent variation in task shares across occupations according to either

measure.

Time usage. One concern is that the analysis thus far considered whether a given

task represents an important activity in the respondent’s job, rather than measuring

how important that activity is relative to others. To address this concern, I draw on

a supplemental survey from 2012 that details the amount of time a subset of workers

spent o different tasks on a given day. Figure F.5 charts the shares of time spent on the

seven complex tasks for different occupational groups. Specifically, I rank occupations

according to their task index and group them into 4 equally sized groups. Drawing on

the supplemental survey, I then compute the average share of time members of these

occupational groups spent on the various tasks.

Figure F.5 shows that each occupational group spends some time on such tasks as

“organizing” or “consulting.” Crucially, though, the fraction of time spent on each of these
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Consulting
Promoting

Figure F.5: Allocation of time to complex tasks by occupational groups

Notes. This table reports the share of time spent on complex tasks by different occupational groups.
Occupations are first ranked according to their task complexity index and grouped into four groups of
approximately equal size. Then the average share of time members of these occupational groups spend on
the various tasks labelled as “complex” in Table B.1 is computed.

tasks is several times greater for the top quartile than for the bottom quartile No single

task drives this result.

F.5 Cross-country evidence on the “firming up” of inequality

Figure F.6 illustrates cross-country trends for the between-firm share of wage inequality,

drawing on aggregated statistics kindly made available by Tomaskovic-Devey et al. (2020).

While the levels cannot be straightforwardly compared across countries due to variation

in the measure of earnings used (e.g., hourly vs. daily vs. monthly earnings), one can

observe a consistent upward trend for almost all countries.

Interestingly, even in a country like France, where total wage inequality has broadly

flatlined over the past few decades, the between-firm component tends to have increased

due to rising sorting and segregation, whereas within-firm inequality has declined for a

variety of reasons (Babet et al., 2022).
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Figure F.6: Cross-country evidence on the between-firm share of wage inequality

Notes. This figure reports the evolution of the between-firm share of wage inequality for a set of OECD
economies. Data source: Tomaskovic-Devey et al. (2020).
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G Quantitative appendix II

G.1 The role of endogenous complementarities in shaping productivity

Figure 7 shows how productivity varies with 𝜒 for different labor market allocations. The

amended production function used in the quantitative analysis, equation (21), provides

for an alternative way to compare outcomes with endogenous talent complementarities

to a counterfactual production function keeping them fixed. Suppose we generalize this

production function to read

𝑓 (�̂� , �̂�′, 𝜉) = 2 ×
(
�̄�

�̄� − 1

)𝜒1𝜉
×
(
𝑎0 + 𝑎1

(1
2
(�̂�)

1
𝜒2+1 + 1

2
(�̂�′)

1
𝜒2+1

)𝜒2+1)
.

Now suppose that, starting from 𝜒1 = 𝜒2 = 𝜒0, we let 𝜒1 increase. The baseline with en-

dogenous talent complementarities corresponds to 𝜒2 = 𝜒1; the fixed-complementarities

counterfactual keeps 𝜒2 = 𝜒0.

Figure G.1 illustrates the productivity implications. Throughout, to isolate the effects

of talent complementarities in the production function, we set 𝜉 = 1
2 and instead of

re-solving the model for different values of 𝜒, the joint distribution of talent types corre-

sponds to either (i) the equilibrium distribution in the baseline economy (2010-2010), (ii)

PAM, or (iii) random matching. As a reference point, and by construction, under PAM –

as in Kremer (1993), for instance – talent complementarities have no effect on output.

The solid orange line and diamond markers show that if complementarities are held

fixed, productivity moves with 𝜒 “as if” matching was perfectly assortative, even if labor

markets exhibit mismatch. This specification misses that greater specificity amplifies

the cost to output of coworker mismatch. By contrast, when complementarities are

allowed to vary endogenously with 𝜒, productivity increases by less (blue vs. orange

lines); and this differential is larger the farther the labor market allocation is from the

PAM benchmark (blue solid vs. blue dotted line).

G.2 Validation of identification approach

To validate the identification of jointly inferred parameters, 𝜓, I conduct three exercises.

First, to support the argument that each element of the parameter vector 𝜓 is closely

linked to a particular moment, Figure G.2 plots the relevant moment against the respec-

tive parameter. As required for local identification, the relationships are monotonic and

exhibit substantial variation.
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Figure G.1: Productivity gains from rising specialization with fixed vs. endogenous talent comple-
mentarities

For the second exercise, let an individual parameter 𝜓𝑖 vary around the estimated

value 𝜓∗
𝑖

and plot the distance function 𝒢(𝜓𝑖 ,𝜓∗
−𝑖), where the remaining parameters are

allowed to adjust to minimize 𝒢 . Figure G.3 indicates that 𝒢 has a steep U-shape for

𝜓𝑖 ∈ {𝑎0, 𝑎1, 𝑏1,𝜆𝑢}. The two plots for 𝜒 – the first of which considers the 2010-2017

targets while the second examines an earlier period in which the value of 𝜒 is lower

– highlight a nuance worth noting: For very high values of 𝜒, inference becomes less

reliable, with the second half of the U not “closing.”

To further examine this issue, I perform a third, Monte-Carlo style exercise that works

as follows: let 𝜒 vary over the interval [�̂�min. across periods, �̂�max. across periods]; for each of

ten equally spaced values in this interval, simulate data from the model holding all

parameters fixed at their average value across sample periods; and apply the indirect

inference method to recover the vector of estimated parameters 𝜓. Figure G.4 shows that

the inferred parameter values align well with those used to generate the data used in

the estimation, though for high values of 𝜒 the estimate lies below the true value. The

reason is that as 𝜒 increases, variation in 𝜉 – and, hence, systematic heterogeneity in

selection on 𝜉, where the average value of 𝜉 has to be larger for teams with bigger talent

gaps (cf. Borovickova and Shimer, 2024) – exerts a stronger effect on output. This means

the direction of the bias in the estimation of 𝜒 is downward, so our estimates represent a

conservative lower bound.
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Figure G.2: Validation of identification: moment against parameter

Notes. This figure plots the targeted moment against the relevant parameter, holding constant all other
parameters at their average value across sample periods.
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Figure G.3: Validation of identification method: distance criterion

Notes. This figure plots the distance function 𝒢(𝜓𝑖 ,𝜓∗
−𝑖) when varying a given parameter 𝜓𝑖 around the

estimated value 𝜓∗
𝑖
. The remaining parameters are allowed to adjust to minimize 𝒢 .
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Figure G.4: Validation of identification method: Monte-Carlo experiment

Notes. This figure shows the value of 𝜒 used to generate simulated data on the horizontal axis and the
corresponding estimated value on the vertical axis.
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